Tag: วงกลม

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 2 โปรแกรมคำนวณค่าพิกัดจุดศูนย์กลางวงกลม (Circle Center Calc)

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 2 โปรแกรมคำนวณค่าพิกัดจุดศูนย์กลางวงกลม (Circle Center Calc)

จุดศูนย์กลางวงกลมนั้นสำคัญไฉน

ในงานสำรวจสำหรับการก่อสร้างเช่นเข็มเจาะ ในขั้นตอนแรกช่างสำรวจจะวางตำแหน่งจุดศูนย์กลางของเสาเข็ม จากนั้นจะวัด offset อย่างน้อยสามด้านตั้งฉากแล้วตอกเหล็กเช่นเหล็กข้ออ้อยลงไปเป็นหมาย ขั้นตอนต่อไปจะปักปลอกเหล็ก (Casing) ในชั้นดินอ่อนเพื่อกันดินทลายตัวลง ในขั้นตอนนี้ช่วงการปักปลอกเหล็กจะมีการวัดระยะจากหมายที่ offset ไว้เพื่อให้ปลอกเหล็กอยู่ในตำแหน่งทั้งทางราบและทางดิ่ง เมื่อปลอกเหล็กลงไปสุดแล้ว เพื่อความมั่นใจว่าได้ตำแหน่งที่ถูกต้องแล้ว จะสำรวจเพื่อเก็บค่าพิกัดคือจุดศูนย์กลางของปลอกเหล็ก แต่คำถามคือจะวัดค่าพิกัดจุดศูนย์กลางของปลอกเหล็กวงกลมได้อย่างไร ในทางปฏิบัติบางครั้งจะใช้ตะแกรงเหล็กปิดปากปลอกเหล็ก แล้วช่างสำรวจจะใช้ตลับเมตรวัดระยะครึ่งหนึ่งของเส้นผ่าศูนย์กลางสองด้านตั้งฉากกันแล้วทำเครื่องหมายไว้บนกระดานไม้ จากนั้นจึงจะวัดค่าพิกัดโดยการตั้งเป้าปริซึม ถ้าใช้มินิปริซึม ตั้งต่ำจะให้ค่าที่ถูกต้องดียิ่งขึ้น แต่ปัญหาคือตอนใช้ตลับเมตรวัดกึ่งกลาง (เส้นที่ผ่านจุดศูนย์กลางคือเส้นที่ยาวที่สุด) เพื่อหาตำแหน่งศูนย์กลางนั้นใช้เวลาพอสมควรและมี error จากการคาดคะเน

วิธีต่อไปที่จะนำเสนอเพื่อทำให้การวัดค่าพิกัดทำได้เร็วขึ้น จะใช้สูตรทางคณิตศาสตร์มาช่วย โดยการวัดค่าพิกัดสามจุดโดยแบ่งให้ระยะห่างแต่ละจุดเท่าๆกัน จากนั้นช่างสำรวจจะใช้เครื่องคิดเลข คำนวณหาค่าพิกัดจุดศูนย์กลาง วิธีการนี้จะใช้เวลารวดเร็วกว่าวิธีแรกพอสมควร ในความเป็นจริงวิธีนี้อยู่บนสมมติฐานว่าปลอกเหล็กต้องไม่บุบเบี้ยว เมื่อได้ค่าพิกัดจุดศุนย์กลางมาแล้วจะนำมาเทียบกับค่าพิกัดที่ได้จากแบบ drawing ถ้าพบว่าค่าต่างกันมากเกินที่กำหนดไว้ จะต้องถอนปลอกเหล็กและทำการปักใหม่

คำนวณได้ทั้ง 2D และ 3D

โปรแกรมที่ผมเขียนนั้นคำนวณได้ทั้ง 2D (ไม่ต้องป้อนค่าระดับ) และ 3D (ป้อนค่าระดับไปด้วย) ส่วนสูตรนั้นถ้าคำนวณแบบ 3D นั้นค่อนข้างซับซ้อน ผมใช้วิธีทางลัดคือไปดูโค้ดที่มีคนเขียนไว้ในอินเทอร์เน็ต โค้ดเดิมเป็น Visual Basic ผมแปลงเป็นโค้ดภาษาซี ส่วนการคำนวณ 2D นั้นซับซ้อนน้อยกว่ามาก ถ้าสนใจสูตรก็สามารถดูจากโค้ดของผมได้

int calcCircleCenter3D(double Ya, double Xa, double Za, 
                       double Yb, double Xb, double Zb, 
                       double Yc, double Xc, double Zc, 
                       double *YCen, double *XCen, double *ZCen, double *Radius){
    double AB, BC, AC;
    double ABi, ABj, ABk, ACi, ACj, ACk, CDi, CDj, CDk, Ni, Nj, Nk;
    double cosBAC, sinBAC;
    double AD, CD, Xd, Yd, Zd;
    double X2e, Y2e, Z2e;

	//if the two points are on the same coordinates stop and return.
    if (((Xa == Xb) && (Ya == Yb)) || ((Xa == Xc) && (Ya == Yc)) 
     || ((Xb == Xc) && (Yb == Yc)))
      return 0;

    //Xa = 80.779; Ya = 90.198; Za = 23.567;
    //Xb = 78.334; Yb = 66.990; Zb = 25.567;
    //Xc = 45.345; Yc = 67.623; Zc = 34.123;
    // Answer Radius = 21.778
    // N Center = 80.840, E Center = 61.890, Z Center = 29.037

    //Lengths of AB, AC, AC
    AB = sqrt(pow(Xa - Xb, 2) + pow(Ya - Yb, 2) + pow(Za - Zb, 2));
    BC = sqrt(pow(Xb - Xc, 2) + pow(Yb - Yc, 2) + pow(Zb - Zc, 2));
    AC = sqrt(pow(Xa - Xc, 2) + pow(Ya - Yc, 2) + pow(Za - Zc, 2));
    //Direction cosines of AB(ABi,ABj,ABk)
    ABi = (Xb - Xa) / AB;
    ABj = (Yb - Ya) / AB;
    ABk = (Zb - Za) / AB;
    //Direction cosines of AC(ACi,ACj,ACk)
    ACi = (Xc - Xa) / AC;
    ACj = (Yc - Ya) / AC;
    ACk = (Zc - Za) / AC;
    //Cosine of angle BAC
    cosBAC = (pow(AB, 2) + pow(AC, 2) - pow(BC, 2)) / (2 * AB * AC);
    AD = cosBAC * AC;
    CD = sqrt(pow(AC, 2) - pow(AD, 2));
    //Position of point D, which is C projected normally onto AB
    Xd = Xa + (AD * ABi);
    Yd = Ya + (AD * ABj);
    Zd = Za + (AD * ABk);
    //Direction cosines of CD(Cdi,CDj,CDk)
    CDi = (Xc - Xd) / CD;
    CDj = (Yc - Yd) / CD;
    CDk = (Zc - Zd) / CD;
    //Direction cosines of normal to AB and CD
    //to be used for rotations of circle centre
    Ni = (ABk * CDj) - (ABj * CDk);
    Nj = (ABi * CDk) - (ABk * CDi);
    Nk = (ABj * CDi) - (ABi * CDj);
    //# Diameter of circumscribed circle of a triangle is equal to the
    //the length of any side divided by sine of the opposite angle.
    //This is done in a coordinate system where X is colinear with AB, Y is // to CD,
    //and Z is the normal (N) to X and Y, and the origin is point A
    //  R = D / 2
    sinBAC = sqrt(1 - pow(cosBAC, 2));
    *Radius = (BC / sinBAC) / 2;
    //Centre of circumscribed circle is point E
    X2e = AB / 2;
    Y2e = sqrt((*Radius) * (*Radius) - X2e * X2e);
    Z2e = 0;
    //Transform matrix
    //                   Rotations                 Translations
    //           ——————————————————————————————————————————————
    //              ABi  ,   ABj  ,  ABk                 Xa
    //              CDi  ,   CDj  ,  CDk                 Ya
    //               Ni  ,    Nj  ,   Nk                 Za
    //           ——————————————————————————————————————————————
    //Position of circle centre in absolute axis system
    *XCen = Xa + (X2e * ABi) + (Y2e * CDi) + (Z2e * Ni);
    *YCen = Ya + (X2e * ABj) + (Y2e * CDj) + (Z2e * Nj);
    *ZCen = Za + (X2e * ABk) + (Y2e * CDk) + (Z2e * Nk);
    return 1;
}

int calcCircleCenter2D(double N1, double E1, double N2, double E2, 
                       double N3, double E3,
                       double *Nc, double *Ec, double *Radius){
    double midN12, midE12, midN23, midE23;
    double k, l, p, q, r, s;
    
    //1 23.432m 78.234m
    //2 45.323m 98.765m
    //3 67.334m 66.999m
    //Answer R=22.907, N Center = 75.876, E Center = 46.217

    if (((N2 == N1) && (E2 == E1)) ||
       ((N2 == N3) && (E2 == E3)) ||
       ((N1 == N3) && (E1 == E3)))
      return 0;

    midN12 = (N1 + N2) / 2.0;
    midE12 = (E1 + E2) / 2.0;
    midN23 = (N2 + N3) / 2.0;
    midE23 = (E2 + E3) / 2.0;


    k = atan((E2-E1)/(N2-N1)) + PI / 2.0;
    l = atan((E2-E3)/(N2-N3)) + PI / 2.0;
    p = 1.0 / tan(k);
    q = 1.0 / tan(l);
    r = tan(k);
    s = tan(l);
    *Ec = ((midE23*q)-(midE12*p)+midN12-midN23)/(q-p);
    *Nc = ((midN23*s)-(midN12*r)+midE12-midE23)/(s-r);
    *Radius = sqrt((E1-*Ec)*(E1-*Ec) + (N1-*Nc)*(N1-*Nc));
    return 1;
}

ดาวน์โหลดโปรแกรม

ไปดาวน์โหลดโปรแกรมได้ที่หน้าดาวน์โหลด จะได้ไฟล์มาชื่อ “ARCCENPT.g1a” วิธีการติดตั้งสามารถทำได้หลายวิธี วิธีแรกผมเขียนไว้แล้วที่ตอนที่ 1 ด้วยการ  copy โปรแกรมลง SD card แล้วถ่ายเข้าเครื่องคิดเลขอีกที วิธีที่ 2 ใช้โปรแกรม FA-124 ของ casio

การใช้งาน FA-124

โปรแกรม FA-124 สามารถไปดาวน์โหลดได้ที่ ลิ๊งค์ นี้ จากนั้นแตก zip แล้วทำการติดตั้งง่ายๆ เป็นโปรแกรมเล็กๆ  ผมเข้าใจว่าช่วงติดตั้งน่าจะมีการติดตั้งไดรเวอร์ของ casio ลงไปด้วย เพราะหลังจากนั้นผมเปิดโปรแกรม FA-124 แล้วเอาสาย USB  มาเสียบเชื่อมต่อเครื่องคิดเลขกับคอมพิวเตอร์จะมองเห็นได้ทันที  ที่เครื่องคิดเลขกดคีย์บอร์ดปุ่ม “F1” เพื่อจะเข้าโหมดการโอนข้อมูล (Data Transfer) คำเตือนการเสียบสาย USB นี้ไม่ควรจะนานเกิน 15 นาที เพราะจอภาพเครื่องคิดเลขจะเสื่อมสภาพได้ 

ส่วนหน้าตาโปรแกรม FA-124 ก็ประมาณนี้

จากนั้นมองที่หน้าต่างด้านขวามือคลิกที่ไอคอนที่วงด้วยหมายเลข “1” จากนั้นมาคลิกขวาที่วงด้วยหมายเลข “2” ที่คำว่า Default เลือกเมนู “Import

จะมีไดอะล๊อกบ็อกซ์ ให้เลือกโฟลเดอร์และไฟล์ ไปที่ไฟล์ “ARCCENPT.g1a” ที่เก็บไว้ในเครื่องคอมพิวเตอร์ ตรง Files of type ต้องเลือกเป็น “G1A File (*.g1a)

จะเห็นไฟล์ “ARCCENPT.g1a” เข้ามาใต้ลิสต์ของคำว่า “Default” ดังรูป ที่หน้าต่างด้านซ้ายให้คลิกที่ไอคอนรูปเครื่องคิดเลข ตามที่ผมวงไว้หมายเลข “1” โปรแกรมจะอ่านไฟล์จาก Storage memory ของเครื่องคิดเลข มาแสดงใต้คำว่า “User1” จากนั้นลากไฟล์ “ARCCENPT.g1a” มาวางที่คำว่า User1 (เผอิญเครื่องคิดเลขผมมีไฟล์นี้อยู่แล้ว) โปรแกรมจะถามว่าต้องการทับหรือไม่ตอบ “Yes” 

ก็เป็นอันว่าขั้นตอนเกือบจะเสร็จ ตอนนี้โปรแกรมนี้จะไปอยู่ใน Storage memory ของเครื่องคิดเลขเรียบร้อย ไม่ลืมว่าขนาดของเมมโมรีนี้ 1.5 MB โปรแกรมขนาดนี้สามารถวางได้ประมาณ 30-40 โปรแกรม ซึ่งเหลือเฟือมาก จากนั้นคลิกที่ไอคอนเพื่อทำการ disconnect และอย่าลืมดึงสาย USB ออก

ทดสอบการใช้โปรแกรมคำนวณจุดศูนย์กลางวงกลม (Circle Center Calc)

ที่เครื่องคิดเลขกดคีย์ “MENU”  จากนั้นเลื่อนลงมาที่โปรแกรมดังรูปด้านล่าง

จะเห็นเมนูของโปรแกรม ซึ่งมีให้เลือก 3 โปรแกรมย่อย ส่วนโปรแกรมที่ 3 นั้นเป็นของแถม

    1. 3 Points in 3D  (Circle Center in 3D) – คำนวณหาค่าพิกัดและค่าระดับจุดศูนย์กลางวงกลม โดยค่าที่ป้อน 3 จุดต้องประกอบด้วยค่าพิกัดและค่าระดับ (X, Y, Z)
    2. 3 Points in 2D (Circle Center in 2D) – คำนวณหาค่าพิกัดของจุดศูนย์กลางวงกลม โดยค่าที่ป้อน 3 จุด เฉพาะค่าพิกัดทางราบเท่านั้น
    3. 2 Angles & 1 Dist – คำนวณหาค่าพิกัดของจุดศูนย์กลางวงกลม โดยวัดมุมสองมุมที่ขอบของวงกลมและวัดระยะราบที่ขอบวงกลมตรงจุดแบ่งครึ่งระหว่างขอบวงกลม อธิบายไม่เห็นภาพค่อยดูรูปอีกทีภายหลัง

คำนวณหาจุดศูนย์กลางวงกลมแบบ 3D (Circle Center in 3D)

ที่เมนูกดเลข “1” ป้อนค่าพิกัด N, E  ตอนถามค่า Z คือป้อนค่าระดับ โดยที่จุดที่เก็บค่าพิกัดและระดับมามี 3 จุด จุดไม่ต้องเรียงตามลำดับเส้นรอบวงก็ได้

จากนั้นกด “EXE” เพื่อคำนวณหาค่าพิกัดและค่าระดับของจุดศูนย์กลาง ผลลัพธ์ดังรูปด้านล่าง

คำนวณหาจุดศูนย์กลางวงกลมแบบ 2D (Circle Center in 2D)

ที่เมนูกดเลข “2” ทดสอบป้อนตัวเลขดังนี้ ป้อนค่าพิกัดจุดที่ 1, 2 และ 3

กด “EXE”  จะได้ผลลัพธ์ดังนี้

คำนวณหาจุดศูนย์กลางวงกลมแบบวัดมุมและระยะทาง

ในบางครั้งการเก็บ As-built เช่นเสากลม เราไม่สามารถวัดค่าพิกัดของศูนย์กลางได้ จึงต้องใช้วัดทางอ้อมและใช้สูตรทางคณิตศาสตร์ช่วย จากรูปด้านล่างจะวัดมุมที่ขอบด้านซ้ายและขอบด้านขวาป้อนเข้าโปรแกรม จากนั้นโปรแกรมจะให้เปิดมุมมาที่ตรงกลาง (ถ้าการวัดมุมมีความแม่นยำ มุมที่ตรงกลางนี้จะผ่านจุดศูนย์กลางวงกลมพอดี) แล้วทำการวัดระยะทาง สุดท้ายโปรแกรมจะคำนวณค่าพิกัดจุดศูนย์กลางให้

ที่เมนูหลักกดคีย์เลข “3” ทดสอบโปรแกรมด้วยการป้อนข้อมูลดังนี้ โดยที่ BS = Back Station คือจุดเป้าหลัง ส่วน STA คือ Station  จุดตั้งกล้องนั่นเอง

จากนั้นโปรแกรมจะให้ set มุมของกล้องไปที่กึ่งกลางวงกลม จากนั้นวัดระยะทาง

และป้อนค่าระยะทาง สุดท้ายโปรแกรมจะคำนวณหาค่าพิกัดจุดศูนย์กลางวงกลมและรัศมีวงกลมมาด้วย

สรุป

โปรแกรมนี้เป็นโปรแกรมลำดับที่ 2 ผมหวังว่าคงเป็นประโยชน์ในแวดวงสำรวจบ้านเราบ้างไม่มากก็น้อย โปรแกรมต่างๆเหล่านี้ จะถูกปรับปรุงแก้ไขในอนาคต ท่านผู้อ่านอาจจะสังเกตเห็นว่า เวลาเรียกโปรแกรมมาอีกครั้ง จะไม่เรียกค่าเดิมที่เคยป้อนไว้ ทำให้ต้องป้อนใหม่ทุกครั้ง ในตอนนี้ผมไม่สามารถอ่านหรือเขียนค่าลงตัวแปรอักษร A-Z ได้ เพราะ casio ไม่ได้เขียนเอกสารไว้ (undocumented) แต่สักพักผมคิดว่าคงหาทางได้ เพราะมีคนทำ reverse engineering เครื่องคิดเลขรุ่นนี้พอสมควร แต่ละโปรแกรมที่ใช้สามารถเก็บค่าที่ป้อนเข้าตัวแปรตัวอักษร A-Z เวลาเรียกโปรแกรมมาใช้อีกครั้งถ้าค่าในตัวแปรไม่ได้ถูกทับไปก็สามารถกด “EXE” ผ่านไปได้เลย ติดตามกันตอนต่อไปครับ