การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 2 (กรณีศึกษาออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล)

ผมทิ้งช่วงเรื่องการออกแบบและประยุกต์ใช้เส้นโครงแผนที่ความเพี้ยนต่ำเป็นระยะเวลาเนิ่นนานพอสมควรเนื่องจากติดภารกิจไปทำงานต่างประเทศที่หาเวลาว่างนานๆได้ยาก ถ้าผู้อ่านไม่ได้ติดตามเรื่องนี้ตั้งแต่ต้นขอให้กลับไปอ่านหรือศึกษาได้ตามลิ๊งค์ตังต่อไปนี้

แนะนำการใช้เส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection)

และ

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 1

เรื่องเส้นโครงแผนที่ความเพี้ยนต่ำเป็นเรื่องใหม่สำหรับประเทศไทย แต่ในต่างประเทศบางประเทศได้ประยุกต์ใช้งานมานานแล้ว ประโยชน์ของเส้นโครงแผนที่ความเพี้ยนต่ำเมื่อประยุกต์ใช้แล้วคือ ความต่างระหว่าง Ground Distance และ Grid Distance จะน้อยมากจนสามารถละเลยไปได้ ไม่เหมือนกับการใช้แผนที่ระบบพิกัดยูทีเอ็ม (UTM) ที่ค่าระยะทางบนพื้นโลกกับระยะทางบนแผนที่ต่างกันมาก (ตัวอย่างระยะทางประมาณ 1 กม. สองระยะทางนี้อาจจะต่างกันประมาณ 40-80 ซม.แล้วแต่พื้นที่) แต่ข้อเสียคือจะต้องมีการกำหนดใช้เส้นโครงแผนที่ความเพี้ยนต่ำแบ่งเป็นพื้นที่หรือเป็นโซน ที่ค่าพิกัดศูนย์กำเนิดจะต่างกันไป อาจจะทำให้ช่างสำรวจหรือผู้ใช้งานสับสนได้ แต่ข้อเสียนี้สามารถลดลงได้ถ้ารัฐหรือหน่วยงานของรัฐได้กำหนดและประกาศใช้เป็นทางการ โดยที่มีเอกสารและไฟล์ projection สำหรับแปลงพิกัดจากระบบพิกัด UTM ไปยังระบบพิกัดที่ใช้ LDP ในแต่ละโซน ผู้ใช้งานสามารถนำค่าพารามิเตอร์นี้หรือนำไฟล์ projection (ตัวอย่างเช่นไฟล์ prj ของ Shape file) ไปแปลงพิกัดได้บนโปรแกรมด้าน GIS หรือนำไปตั้งค่าบนเครื่องมืออุปกรณ์เช่น GNSS RTK ที่สามารถแปลงพิกัดได้แบบ real time

ตัวอย่างการประยุกต์ใช้งาน

ผมขอยกตัวอย่างอีกครั้งเช่นรัฐโอเรกอนของอเมริกาที่มีการออกแบบ LDP และประกาศใช้กันมานานแล้วดังรูปด้านล่าง 

พื้นที่รัฐโอเรกอน ประมาณครึ่งหนึ่งของประเทศไทย (ประมาณ 255,000 ตร.กม.)

ออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล

ก็เป็นกรณีศึกษาก็แล้วกันนะครับ ผมจะออกแบบคร่าวๆให้พอมองเห็นภาพในภาพรวม ผมจะไล่ไปตามขั้นตอนที่ได้กล่าวไว้ในตอนที่ 1 และผมจะตั้งเป้าว่า ความเพี้ยน (Distortion) ไม่เกิน 20 ppm ก็มาดูกันว่าในพื้นที่ศึกษานี้ ค่าความเพี้ยนจะอยู่ในเกณฑ์นี้ไหม 20 ppm ก็คือระยะทางจริงๆบนพื้นโลก (Ground Distance)  1 กม. ระยะทางบนระนาบเส้นโครงแผนที่ LDP (Grid Distance) จะต่างกันไม่เกิน 20 มม. (20 มม. ต่อ 1 ล้านมิลมิเมตร หรือ 1 กม. นั่นเอง)

1.กำหนดพื้นที่ขอบเขตและหาค่าตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0)

สำหรับขอบเขตก็ตามหัวข้อคือประกอบไปด้วยจังหวัดกรุงเทพมหานคร สมุทรปราการ นนทบุรี และปทุมธานี ขนาดพื้นที่ประมาณ 85 กม.ในแนวเหนือใต้ และกว้างประมาณ 75 กม. ในแนวตะวันออกตะวันตก หรือกล่าวโดยย่อพื้นที่ 85 กม. x 75 กม.

ต่อไปจะหาค่าระดับที่เป็นตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0) ข้อมูลที่จะนำมาในการหาค่าเฉลี่ยจะใช้แผนที่ของกรมแผนที่ทหาร ปี 2553 ชื่อ “แผนที่แสดงค่าหมุดระดับในเขตกรุงเทพมหานครและปริมณฑล” เนื่องจากแผนที่ไม่สามารถหาแหล่งดาวน์โหลดทางการได้ จึงได้ดาวน์โหลดจากกระดานสนทนาจากเว็บไซต์ ที่ความคมชัดน้อย บางครั้งตัวเลขค่าระดับอาจจะแตกต่างค่าจริงไปบ้าง แต่ผมคิดว่าคงไม่ได้ทำให้การออกแบบ LDP กรณีศึกษานี้มีความด้อยลง  ผมนำแผนที่ชุดนี้มา ทำ rubber sheet เพื่อขึงพิกัดให้เข้ากับเส้นโครงแผนที่ UTM จากนั้นทำการ digitize จุดแต่ละจุดระดับลง ไม่ได้เอาทุกจุด แต่เลือกจุดประมาณ 10 กม.ต่อหนึ่งจุด ค่าระดับนี้เป็นค่าระดับน้ำทะเลปานกลาง (Orthometric Height) ซึ่งเราจะแปลงค่าระดับนี้ไปเป็นค่าระดับเหนือทรงรี (Ellipsoid Height) ในขั้นตอนต่อไป

จากนั้นทำการจัดเก็บจุดค่าระดับเป็นไฟล์ shape file กำหนดระบบพิกัดเป็นภูมิศาสตร์ (Geographic) เพื่อสะดวกต่อการใช้ค่าพิกัดนี้ในภายหลัง

นำไฟล์รูปที่ขึงแล้วและไฟล์จุดค่าระดับเข้าโปรแกรม QGIS ใช้ฟังก์ชั่น vector ทำการหา Basic Statistics for fields จำนวนจุดทั้งหมด 365 จุด ค่าระดับต่ำสุด 0.000 เมตร ค่าระดับสูงที่สุด  9.956 เมตร ค่าเฉลี่ย Mean 2.988 เมตร ผมจะนำค่าเฉลี่ยนี้ไปใช้งาน ค่านี้ขอใช้ตัวย่อเป็น H0 = 2.988 เมตร

ค่าระดับ H0 = 2.988 เมตร นี้จะนำมาแปลงเป็นความสูงเทียบกับทรงรี (h0) การประยุกต์ใช้ LDP ก็คือนำระนาบมาวางแตะค่าระดับนี้ โดยที่กำหนดโซนความกว้างทางราบ และช่วงค่าระดับความสูงที่ยังสามารถใช้ได้

ไดอะแกรมแสดงเส้นโครงแผนที่ความเพี้ยนต่ำที่ระนาบพิกัดฉากสัมผัสที่ความสูงเฉลี่ย h0

2.เลือกเส้นโครงแผนที่และกำหนด Central Meridian ที่จุดใกล้จุดศูนย์กลางพี้นที่

เส้นโครงแผนที่ที่นิยมนำมาทำ LDP มี 3 ประเภทคือ Transverse Mercator (TM), Lambert Conformal Conic (LCC 1SP) และ Oblique Mercator (OM) โดยที่แนวทางการเลือกถ้าพื้นที่ยาวไปในทิศทางตะวันออกตะวันตกเลือก LCC ถ้าพื้นที่ยาวไปในทิศทางเหนือใต้เลือก TM ถ้าพื้นที่เอียงไปในแนวทะแยงมุมกันทิศเหนือใต้และตะวันออกตะวันตกให้เลือก OM ในเคสนี้พื้นที่ยาวในทิศทางเหนือใต้ก็เลือกเป็น TM ที่เราคุ้นเคยกันดี

ต่อไปกำหนด Central Meridian (CM) ที่จุดกึ่งกลางของพื้นที่ (Centroid) ผมไปดาวน์โหลดไฟล์ shape file ที่รวมเอาเส้นขอบเขตของจังหวัดในประเทศไทย เมื่อโหลดมาแล้วเปิดใน QGIS จากนั้นทำการรวมพื้นที่ 4 จังหวัดนี้แบบ Dissolve เพื่อให้เหลือเส้น polygon เส้นเดียว แล้วจะนำไปหาจุดศูนย์กลางพี้นที่ โดยใช้ฟังก์ชั่นด้าน vector ของ Geometry tools เพื่อหา centroid ได้จุดมาดังรูปด้านล่าง

ได้ค่าพิกัดภูมิศาสตร์ของจุด Centroid ดังนี้ latitude: 13.852166 longitude: 100.629706 หน่วยเป็นดีกรี แปลงเป็นหน่วย DMS ได้ latitude: 31°51’7.8″N longitude: 100°37’46.94″E การวาง central meridian จะนิยมเลือกลิปดา (second) ที่เป็นจำนวนเต็ม ผมเลือก ค่าเต็มๆคือ Latitude = 31°51′ และ  CM =  100°38′

3.คำนวณหาค่าสเกลแฟคเตอร์ k0 ที่แกน Central Meridian

ก่อนหน้านี้ในข้อ 1. ผมได้ค่าระดับน้ำทะเลปานกลางของพื้นที่เฉลี่ย (H0) 2.988 เมตร จะนำค่านี้ไปแปลงเป็นค่าระดับเทียบทรงรี (h0) เตือนกันนิดว่าทรงรีที่เราใช้เป็น WGS84 การหา k0 ไม่ได้ยากตามสูตรนี้

Formula 1: Calculate Axis Scale Factor

การหาค่า h0 ก็ไม่ได้ยุ่งยากอะไรในทูลส์ Surveyor Pocket Tools ก็มีโปรแกรม Geoid Height ให้ใช้งาน h0 = H0 + N  โดยที่ N คือ Geoid Separation แต่จะก่อนคำนวณทีละขั้นตอนแบบนี้แบบแมนวลผมจะขอเสนอวิธีที่สะดวกกว่านั้น ผมจะใช้ทูลส์ชือ Init Design LDP ที่อยู่ใน Surveyor Pocket Tools มาช่วย

 คำนวณหาค่า k0 ด้วย Init Design LDP

เปิดโปรแกรม Init Design LDP จะเห็นหน้าตาโปรแกรมดังรูปด้านล่าง

ป้อนข้อมูลค่าระดับเฉลี่ย H0 = 2.988 เมตร ป้อนค่า Latitude  of project center =  13°51′ และ  Longitude of project center (CM )=  100°38′ ที่ได้จากข้อ 2.

จากนั้นคลิกที่ไอคอนลูกศรชี้ลง (เลข 3) เพื่อทำการคำนวณจะได้ผลลัพธ์ดังนี้

โปรแกรมจะคำนวณหาค่า h0 ให้และนำค่านี้ไปแทนในสมการด้านบน สุดท้ายจะคำนวณหา k0 = 0.999996 (แนะนำให้ใช้ทศนิยม 6 ตำแหน่ง) ผมพยายามขยับ CM ไปทางตะวันออกและตะวันตกครั้ง 15″ แต่ค่า k0 ยังเกาะที่ค่า 0.999996 นี้ ผมเลยเลือก CM = 100°38′

4.ตรวจสอบความเพี้ยน (Distortion) ตลอดทั้งพื้นที่

เป็นขั้นตอนที่สำคัญมาก คือถ้าเราเลือก Central Meridian มาหลายๆอันจะต้องเอาค่า k0 มาคำนวณหา Distortion

ค่า k คือ grid scale factor ค่า k นี้เราสามารถหาได้จาก สูตรด้านล่าง (เครดิตจาก Map Projection – A Working Manual ของ John P. Snyder หน้า 61)

Formula 2: Calculate Grid Scale Factor

สูตรก็เป็นสูตรเดียวที่เราใช้หา grid scale factor สำหรับ UTM เพียงแต่ค่า k0 ที่เราใช้จะเป็นค่า k0 ที่ได้จากการคำนวณด้วยโปรแกรม “Init Design LDP” คือ k0 = 0.99996, แทนค่า λ0 ด้วย 1.756383004 เรเดียน (λ0 คือ Central Meridian = 100°38′)

เลือกจุดทดสอบ

ผมเลือกจุดมาทั้งหมด 10 จุด ตำแหน่งให้อยู่ขอบๆ เป็นที่ทราบกันดี ว่าถ้าเป็นเส้นโครงแผนที่ TM ตัว grid scale factor จะเปลี่ยนจากด้านตะวันออก-ตะวันตกเท่านั้น (ไม่มีผลกับเลื่อนไปทางเหนือ-ใต้)

เรากำหนด CM ค่อนข้างจะกลางของพื้นที่ ดังนั้นจะมาดูกันว่าด้านขอบนั้นมี distortion จะยังอยู่ในเกณฑ์ไหม

การตรวจสอบจุดหาความเพี้ยนจะอาศัยการคำนวณจากสูตรที่ผมลงมาให้ก่อนหน้านี้ ลองมา workshop กันดูสักนิด  เริ่มจากจุดที่ 1  แต่จุดต่อๆไปผมจะใช้ทูลส์อีกตัวในชุด Surveyor Pocket Tools มาช่วย

Point No 1 Lat (ɸ)= 13.5079570 Long (λ) = 100.8674784 H = 6.394

คำนวณหาความสูงเทียบกับทรงรี

ได้ค่าh = H + N แทนค่าในสูตร h = 6.394 -29.9632 = -23.5692 เมตร

คำนวณ RG

RGเป็นค่าที่ขึ้นอยู่กับ latitude และพารามิเตอร์ของทรงรี (Ellipsoid) WGS84 ดังนี้

a = 6378137, e = 0.08181919084262149, e’ = 0.08209443794969568

แทนค่า

ใช้สูตรที่ 1 (formula 1) ได้ค่า  RG= 6359074.928

คำนวณค่า k

ใช้สูตรที่ 2 (formula 2) คำนวณได้ค่า T = 0.057708361, C = 0.006371791, A = 0.003973557 สุดท้ายคำนวณหาค่า k = 1.000003945

คำนวณหาค่าความเพี้ยน (Distortion)

แทนค่า k, RG และค่า h ลงไป

จะได้ค่า 7.65 x 10-6 เขียนให้ง่ายคือ 7.65 ppm (7.65 มม. ต่อหนึ่งล้านมม. ซึ่งก็เท่ากับ 7.65 มม.ต่อ 1 กม.) สรุปได้ว่าที่จุดที่ 1

Point No 1 Lat (ɸ)= 13.5079570 Long (λ) = 100.8674784 H = 6.394

มีค่าความเพี้ยน (Distortion) = 7.65 ppm จะเห็นว่ายังไม่เกินค่า 20 ppm ที่ผมตั้ง tolerance ไว้

สร้างเส้นโครงแผนที่ความเพี้ยนต่ำ

มาลองสร้างเส้นโครงแผนที่ความเพี้ยนต่ำโดยอาศัยทูลส์ Create LDP มาช่วย ทูลส์ตัวนี้นอกจากจะสร้าง LDP ได้แล้วยังสามารถตรวจเช็คค่าความเพี้ยนได้ทันที พร้อมทั้งแปลงค่าพิกัดจาก latitude/longitude ไปยังค่าพิกัดใน LDP ได้ เปิดทูลส์ Surveyor Pocket Tools คลิก Create LDP

ตามรูปบนผมสร้างเส้นโครงแผนที่ความเพี้ยนต่ำ โดยอันดับแรกเลือก Projection ก็คือ Transverse Mercator กำหนดใช้ Latitude of origin = 13°51′ และ Central Meridian = 100°38′ ผมกำหนดค่า False Northing (FN) = 500000 และ False Easting (FE) = 200000 หน่วยเป็นเมตร รับรองว่าค่าพิกัดขอบของพื้นที่จะไม่มีค่าติดลบ (พื้นที่ 85 กม. x 75 กม. หรือ 85000 ม. x 75000 ม.) และที่สำคัญมากคือค่า Scale factor at grid origin (k0) = 0.999996 ที่คำนวณไว้ตั้งแต่ตอนแรกๆ ค่า FN และ FE ผมหลีกเลี่ยงเลือกค่าที่ใกล้เคียงกัน และพยายามจะไม่ให้ค่ามากจนไปใกล้เคียงกับ UTM อันจะก่อให้เกิดความสับสน

คำนวณหาค่าความเพี้ยนด้วยทูลส์ Create LDP

ลองป้อนพิกัดจุดที่ 1 เข้าไปในกรอบที่ 2 ดังรูป

ทำการคำนวณด้วยการคลิกไอคอนรูปลูกศรจะได้ผลลัพธ์

ค่าความเพี้ยน 7.65 ppm ตรงกับที่เราคำนวณด้วยมือ ผมใช้โปรแกรมช่วยคำนวณมาทั้ง 10 จุดได้ผลลัพธ์ดังนี้

จะเห็นว่าจุด ที่ 3 มีความเพี้ยน (distortion) อยู่ที่ 13.18 ppm เพราะอยู่ชายขอบด้านตะวันออกสุด และจุดที่ 9 ค่าความเพี้ยนมากถึง 17.27 ppm อยู่เกือบขอบด้านตะวันตก แต่ยังไงก็ไม่เกิน 20 ppm ตัวเลขที่ตั้งไว้ ส่วนที่ลองจิจูดใกล้เคียงกับ CM ได้แก่จุดที่ 4 จะเห็นค่าความเพี้ยนเล็กมาก ขนาด -0.6 ppm แค่นั้นเอง

5.กำหนดพารามิเตอร์เส้นโครงแผนที่ความเพี้ยนต่ำให้เรียบง่าย

จากที่คำนวณและออกแบบมาตั้งแต่ต้น สามารถกำหนดพารามิเตอร์เส้นโครงแผนที่นี้ให้เรียบง่ายและอ่านง่ายได้ดังนี้
Projection: Transverse Mercator
Latitude of grid origin: 13° 51’ 00” N
Longitude of central meridian: 100° 48’ 00” E
Northing at grid origin: 500,000 m
Easting at central meridian: 200,000 m
Scale factor on central meridian: 0.999996 (exact)

ค่าพารามิเตอร์นี้ต้องติดไว้ข้างแผนที่ที่ใช้เส้นโครงแผนที่ความเพี้ยนต่ำนี้เสมอ

6.กำหนดหน่วยระยะทางและพื้นหลักฐานให้ชัดเจน

Linear unit:  Meter

Ellipsoidal datum :  World Geodetic System 1984 (WGS84)

Vertical datum:  Mean Sea Level (MSL)

System:  Bangkok Metropolis Low Distortion Projection Coordinate System

Zone:  Bangkok Metropolis Area

หน่วยระยะทางและพื้นหลักฐานต้องติดไว้ข้างแผนที่ที่ใช้เส้นโครงแผนที่ความเพี้ยนต่ำนี้เสมอ

จัดเก็บเส้นโครงแผนที่ความเพี้ยนต่ำเข้าฐานข้อมูล

ทูลส์ Create LDP นอกจากสามารถคำนวณหาค่าความเพี้ยนและแปลงพิกัดได้แล้ว ยังสามารถจัดเก็บเส้นโครงแผนที่ที่เราออกแบบ เข้าไปเก็บในฐานข้อมูล เพื่อความสะดวกสามารถนำมาใช้ในภายหลังได้ เมื่อเปิดโปรแกรม Surveyor Pocket Tools

คลิกที่ LDP Database จะเห็นฐานข้อมูลของ LDP สำหรับเครื่องผมแล้วมีฐานข้อมูลเก็บเส้นโครงแผนที่ความเพี้ยนต่ำที่ผมนำมาศึกษาดังนี้

กลับมาที่ทูลส์ Create LDP ดั้งเดิมเรามีเส้นโครงแผนที่ความเพี้ยนต่ำที่กำหนดไว้ดังนี้ ต้องการจัดเก็บให้คลิกที่ไอคอน LDP โปรแกรมจะถามยืนยันว่าต้องการจัดเก็บหรือไม่

จากนั้นกลับมาดูที่ LDP Database คลิกที่ไอคอนลูกศรวนเพื่อ “Refresh” จะเห็นฐานข้อมูลอัพเดทดังนี้ ผมวงสีแดงเน้นให้ดูพารามิเตอร์ที่ป้อนไป

แปลงพิกัดด้วยทูลส์ Transform Coordinates

เมื่อจัดเก็บฐานข้อมูลเส้นโครงแผนที่ความเพี้ยนต่ำแล้ว ต้องการแปลงพิกัดระหว่าง UTM/Geographic ไปยังเส้นโครงแผนที่ความเพี้ยนต่ำก็สามารถทำได้ดังตัวอย่างต่อไปนี้ เริ่มจากเปิดโปรแกรม Transform Coordinates มาก่อน

จากตัวอย่างคำนวณค่าพิกัดยูทีเอ็ม N = 1,561,926.0937, E = 639,807.9239 Zone: 47N บนพื้นหลักฐาน WGS84 ไปยังพื้นหลักฐาน Bangkok Metropolis (LDP) จะได้ค่าพิกัด N = 530,441.5826, E = 163,493.4658

เครดิตสูตรที่นำมาใช้

เส้นโครงแผนที่ความเพี้ยนต่ำจริงๆแล้วก็คือเส้นโครงแผนที่ตัวหนึ่ง ไม่มีอะไรพิเศษพิศดาร เพียงแต่ยกระนาบขึ้นมาแตะทึ่ค่าระดับเฉลี่ย h0 จุดนี้เองที่พิเศษเพราะว่าจะได้ค่า k0 ตัวใหม่ที่ไม่ใช่ 0.9996 แบบยูทีเอ็ม ดังนั้นสูตรที่นำมาใช้เพื่อคำนวณเส้นโครงแผนที่ความเพี้ยนต่ำ ทั้งการหา Grid Scale Factor หรือแปลงพิกัด ก็ยังเป็นสูตรของ Transverse Mercator

ในโปรแกรม Surveyor Pocket Tools ผม implement สูตรการคำนวณจาก Map Projection – A Working Manual by John P. Snyder เป็นโค้ดภาษาไพทอนเฉพาะการคำนวณที่เกี่ยวข้องกับ LDP ส่วนการแปลงพิกัดข้ามพื้นหลักฐานอื่นๆยังใช้ไลบรารีจาก Proj4 ถ้าสนใจสูตรของ Transverse Mercator ให้ไปดูได้ที่หน้า 60-63 ของตำราเล่มนี้

ผมก็ยังยืนยันว่าถ้าสามารถประยุกต์ใช้งาน LDP ได้เป็นโซนๆ จะช่วยทำให้งานสำรวจ ออกแบบ ก่อสร้างและงานแผนที่ ทั้งงานในสำนักงานและงานในสนาม สามารถคลี่คลายไปได้ สามารถแก้ปัญหาเรื่องระยะทางที่เคยต่างในสองโลก ได้กลับมาใกล้เคียงกันมากจนยอมรับได้ แต่ต้องมีหน่วยงานที่มากำหนดมาตรฐานแบ่งโซนพื้นที่และออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำในแต่ละโซนได้เหมาะสมกับสภาพพื้นที่ ในกรณีนี้จะต่างกับค่าพิกัดลอยเพราะศูนย์กำเนิดลอยเป็นการตั้งขึ้นมาเองไม่มีมาตรฐาน ไม่สามารถแปลงพิกัดไปยังค่าพิกัดภูมิศาสตร์หรือยูทีเอ็มได้ 

เนื่องจากทิ้งท้ายบทความเรื่องออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ ตอนที่ 1 ไว้นานมาก จนมีผู้อ่านหลายท่านได้ทักท้วงมา ประกอบกับโปรแกรมทูลส์ที่ช่วยในการออกแบบก็เช่นกันพัฒนาไว้นานมาก แต่ไม่มีโอกาสได้นำเสนอวิธีการใช้งาน ก็ถือเป็นโอกาสอันดีได้นำเสนอวิธีการออกแบบเส้นโครงแผนที่ รวมถึงวิธีการใช้งานโปรแกรมด้วย พบกันตอนต่อไปครับ

 

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 9 โปรแกรมคำนวณหาจุดตัด (Intersection)

งานในด้านสำรวจเป็นงานที่ต้องเกี่ยวข้องกับ Geometry บน plane เป็นส่วนใหญ่ ในบางครั้งอาจจะมีโจทย์ที่ต้องคำนวณหา จุดตัดระหว่างเส้นตรงสองเส้น หรือเส้นตรงกับวงกลม หรือวงกลมกับวงกลม โดยที่เส้นตรงอาจจะทราบค่าพิกัดหัวและท้าย หรือทราบค่าพิกัดเพียงหนึ่งจุดและค่าอะซิมัท ส่วนวงกลมนั้นจะต้องทราบค่าพิกัดจุดศูนย์กลางและรัศมี สูตรการคำนวณไม่ได้ยาก สมัยนี้โจทย์พวกนี้เราใช้โปรแกรมด้าน CAD เขียนแบบช่วยเสียเป็นส่วนใหญ่ อย่างที่ผมเคยบอกออกไปครับ ถ้าช่างสำรวจเรามีโอกาสได้ใช้สมองคิดด้าน geometry บ้างและสามารถใช้เครื่องคิดเลขเป็นตัวช่วย ก็จะสามารถพัฒนาทักษะด้านนี้พอสมควร

โปรแกรมคำนวณหาจุดตัด (Intersection)

โปรแกรมเขียนไว้นานแล้ว แต่มีโอกาสมาปรับแก้ใหม่ให้สามารถคำนวณจุดสัมผัส เช่นเส้นตรงกับวงกลมโดยสามารถตั้ง Tolerance ได้ ผมตั้งไว้ที่ 1 มม. ขอขยายความว่าเราสามารถหาจุดตัดเส้นตรงกับวงกลมได้เป๊ะๆ สองจุด แต่ในกรณีที่เป็นจุดสัมผัส (Tangent) นั้นยากโอกาสน้อยมากที่จะคำนวณหาจุดสัมผัสจากโจทย์ที่กำหนดเส้นตรงที่ผ่านจุดและมีทิศทางตามอะซิมัท มาสัมผัสกับวงกลมที่กำหนดจุดศูนย์กลางและรัศมี  ผมจึงตั้ง tolerance ไว้ 1 มม. ถ้าเส้นตรงมาเฉียดจุดสัมผัสนี้ไม่ว่าจะด้านนอกหรือด้านในวงกลมถ้าระยะห่างเส้นตรงห่างจากจุดสัมผัสจริงน้อยกว่า 1 มม. ก็ให้ถือว่าเส้นตรงเส้นนี้สัมผัสกับวงกลม สำหรับไอคอนโปรแกรมเมื่อติดตั้งแล้ว ดังรูปด้านล่าง

ดาวน์โหลดและติตตั้งบนเครื่องคิดเลข

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม Intersection จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “INSCTEX.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มต้นใช้งานโปรแกรมหาจุดตัด (Intersection)

กดคีย์ “Main Menu” ของเครื่องคิดเลขใช้คีย์ลูกศรไล่ไปหาไอคอนโปรแกรม Intersection ดังรูป แล้วกดคีย์ “EXE”

เมนูหลักของโปรแกรม

จะเห็นหน้าตาโปรแกรม เหมือนทุกๆโปรแกรมจะมีชื่อโปรแกรม รุ่น พร้อมทั้งบอกลิขสิทธิ์ย่อๆว่าสามารถใช้งานได้ฟรี หรือสำเนาจ่ายแจกให้คนอื่นได้ ซึ่งจะมีเมนูหลักดังนี้

F1 – Set สำหรับเลือกการคำนวณว่าจะเป็นเส้นตรงตัดกับเส้นตรง เส้นตรงกับวงกลม หรือวงกลมกับวงกลม

F2 – IN (Input) จะเป็นการป้อนค่าพิกัดหรืออะซิมัท ตามตัวเลือกที่เลือกไว้ในเมนูแรก (F1 – Set)

F3 – Calc คำนวณหาจุดตัด ซึ่งในเมนูย่อยสามารถแสดงรูปเส้นตรง (Plot) วงกลมพร้อมจุดตัดได้

F5 – Info แสดงเครดิตไลบรารี ที่โปรแกรมนำมาใช้งาน

F6-Exit ออกจากโปรแกรม

ตัวอย่างที่ 1 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Line and Line Intersection)

เป็นการคำนวณหาจุดตัดเมื่อกำหนดเส้นตรงสองเส้นที่มีค่าพิกัดหัวและท้าย ดังรูปด้านล่างเป็นแปลงที่ดิน DEFG ต้องการหาค่าพิกัดจุด “X” ซึ่งเป็นพิกัดศุนย์กลางพื้นที่ที่เกิดจากเส้นตรงจากมุมของแปลงที่ดินลากเป็นเส้นทแยงมุมตัดกัน

เลือกรายการคำนวณ

ที่เมนูหลักของเครื่องคิดเลขกดคีย์ F1-Set จะเห็นตัวเลือกรูปแบบการคำนวณจุดตัด (Intersection Type) เมื่อกดคีย์ “EXE” จะเห็นรายการให้เลือก 4 อย่าง ให้เลือก “Line X Line” ดังรูป กดคีย์ “EXE” จากนั้นกดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F2-IN ป้อนค่าพิกัดของเส้นตรงสองเส้น ตามโจทย์ข้างต้น กดคีย์ F6 – OK เพื่อออก

คำนวณหาจุดตัด

กลับมาที่เมนูหลักของโปรแกรม จากนั้นกดคีย์ F3 – Calc เพื่อคำนวณหาจุดตัด “X” โปรแกรมจะทวนค่าพิกัดของเส้นตรงเส้นที่ป้อนไว้ก่อนจะแสดงค่าพิกัดจุดตัด ถ้าจุดนี้อยู่บนเส้นตรงทั้ง 2 เส้น กดคีย์ F2 – PgDn เพื่อเลื่อนไปหน้าต่อไป

หน้าสุดท้ายจะเห็นค่าพิกัดจุดตัด “X” N = 1652.560, E = 1739.142

แสดงรูปตัด (Plot)

กดคีย์ F5-Plot เพื่อแสดงเส้นตรงสองเส้นและจุดตัด จอภาพเป็น dot pixel หยาบๆก็ได้ขนาดนี้พอให้เกิดจินตนาการว่าเส้นตรง 2 เส้นวางตัวในลักษณะใดและตัดกันที่ตรงไหน กดคีย์ F6-Done เพื่อออก

ตัวอย่างที่ 2 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Azimuth and Azimuth Intersection)

การกำหนดเส้นตรงโดยกำหนดจุดและอะซิมัทให้ ในกรณีนี้เส้นตรงจะยาวไม่สิ้นสุด ดังนั้นถ้าเส้นตรงที่กำหนดไม่ขนานกัน ก็มั่นใจได้เลยว่าหาจุดตัดได้แน่ (ต่างจากตัวอย่างแรกที่หาจุดตัดบนเส้นตรงทั้งสองเท่านั้น)

กำหนดเส้นตรงที่เป็น Alignment ของงานถนน เส้นที่ 1 เป็น  ผ่านจุด N: 2641990.928 , E = 231848.514  Azimuth: 35°28′ 1.7433″ เส้นที่ 2 ผ่านจุด N: 2641812.446 E: 231753.041 Azimuth: 9°12′ 20.4212″ คำนวณหาจุดตัด PI (Point of Intersection)

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Azi” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัด ไม่ลืมว่าป้อนอะซิมัทคั่นด้วยเครื่องหมายลบ  เมื่อเสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณหาจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรม กดคีย์ F3-Calc เพื่อคำนวณหาจุดตัด โปรแกรมจะทวนค่าพิกัดที่ป้อนเข้าไปก่อน กดคีย์ F2-PgDn เพื่อเลื่อนไปหน้าแสดงผลถัดไป

จะได้ค่าพิกัดจุดตัดที่เป็นจุด PI (Point of Intersection N: 2641870.013, E: 231762.371 กดคีย์ F5-Plot จะเห็นรูปร่างเส้นตรงสองเส้น พร้อมจุดตัด “I1” บนหน้าจอภาพกดคีย์ F6-Done สองครั้งเพื่ออก

ตัวอย่างที่ 3 คำนวณหาจุดตัดระหว่างเส้นตรงกับวงกลม (Azimuth and Circle Intersection)

อย่างที่ผมเกริ่นไปข้างต้นว่าเส้นตรงถ้าตัดผ่าเข้าไปในวงกลมจะได้จุดตัดสองเส้น แต่กรณีพิเศษที่เส้นตรงไปสัมผัสกับวงกลมกรณีนี้จะได้จุดตัดคือจุดสัมผัสมาจุดเดียว มาลองดูตัวอย่างแบบนี้ กำหนดให้เส้นตรงผ่านจุด N: 2642178.562, E: 231597.085 Azimuth: 161°8′ 58.2981″ กำหนดวงกลมมีจุดศูนย์กลาง N: 2641772.451, E: 231999.821  รัศมี 249.921 เมตร

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Cir” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัดและรัศมีวงกลม

ที่เมนูหลักของโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัดของเส้นตรงและป้อนค่าอะซิมัท ป้อนค่าพิกัดศูนย์กลางวงกลมพร้อมทั้งรัศมี เสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรมกดคีย์ F3-Calc เพื่อคำนวณจะได้ผลลัพธ์แสดงผลมาดังรูปด้านล่าง

สังเกตว่าตรงจุดตัดโปรแกรมจะแสดงว่าได้จุดสัมผัส Tangent มา 1 จุดคือ N: 2641691.702, E: 231763.305 กดคีย์ F5-Plot เพื่อแสดงรูปเส้นตรงและวงกลม ก็พอกล้อมแกล้มการวาดรูปร่างวงกลม ไม่มีไลบรารีของเครื่องคิดเลขต้องอาศัยวาดจุดลงไปตามเส้นรอบวงแทน  จุดสัมผัสแสดงด้วยตัวอักษร “I1” จุดศูนย์กลางวงกลมแสดงด้วยตัวอักษร “C1”

ตัวอย่างที่ 4 คำนวณหาจุดตัดระหว่างวงกลมกับวงกลม (Circle and Circle Intersection)

มาถึงตัวอย่างสุดท้าย ผมจะขอรวบรัดแสดงเฉพาะรูปหน้าจอ กำหนดโจทย์ วงกลมวงแรกมีค่าพิกัดศูนย์กลาง N: 2641210.885, E: 232480.916 รัศมี 525 เมตร วงกลมวงที่ 2 N: 2641256.635 E: 233130.568 รัศมี 250 เมตร คำนวณหาจุดตัดระหว่างวงกลมสองวงนี้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณหาจุดตัดนี้ไฟล์ที่จัดเก็บข้อมุลคือ “INTSCT.CFG

ก็ยังมีหลายซีรี่ย์สำหรับโปรแกรมเครื่องคิดเลขในชุดนี้ ก็ติดตามกันได้ต่อไปครับ

Update: โปรแกรมแปลงค่าพิกัดภูมิศาสตร์ Geographic Calculator (GeoCalc) บนเครื่องคิดเลข Casio fx-9860G II SD

Geographic Calculator

สืบเนื่องจากตอนก่อนหน้านี้ผมได้นำเสนอโปรแกรมแปลงพิกัด Geographic Calculator แบบไม่ได้ใช้ไลบรารีช่วยเรื่อง User Interface โปรแกรมมีลักษณะง่ายๆ เปิดมาเจอเมนูเลือกลักษณะที่จะคำนวณ จากนั้นโปรแกรมจะถามค่าพิกัดที่ต้องการแปลงแล้วคำนวณให้ ข้อดีคือใช้ง่าย ข้อเสียถ้าป้อนข้อมูลผิดพลาด จะย้อนกลับไม่ได้ ต้องเดินหน้าผิดไปจนจบ แล้วค่อยย้อนกลับมาอีกที

เปลี่ยนรูปแบบการติดต่อกับผู้ใช้ด้วยไลบรารี MyLib

ไลบรารี MyLib เป็นไลบรารีภาษาซีเล็กๆที่ผู้พัฒนาใช้นาม hayzel ได้เขียนไว้เพื่อใช้บนเครื่องคิดเลข Casio fx-9860G II SD ผมนำมาใช้และชอบ ทำให้มีแรงใจที่จะเขียนโปรแกรมบนเครื่องคิดเลขรุ่นเทพรุ่นนี้ได้มาหลายโปรแกรม และก็เหมือนเดิมครับว่าโปรแกรมที่ผมเขียนนั้นใช้งานได้ฟรี (Freely Usability) เพื่อใช้ในแวดวงงานสำรวจทำแผนที่ตลอดจนงานสำรวจเพื่อการก่อสร้างก็ตาม

ก็ขอตั้งชื่อโปรแกรมเล็กๆสำหรับแปลงพิกัดบนพื้นหลักฐาน WGS84 นี้ว่า “GeoCalc Extra” ก่อนอื่นสูตรที่ใช้ในการคำนวณผมใช้ไลบรารีชื่อ mgrs สามารถคำนวณแปลงพิกัดในระบบพิกัด UTM, geographic, UPS และ MGRS ได้ ขนาดไม่ใหญ่มากนัก สามารถคอมไพล์และบิวท์มาใส่เครื่องคิดเลขรุ่นนี้ได้ ทั้ง MyLib และ mgrs เป็นโปรแกรมเปิดโค้ด ฟรีทั้งคู่

ดาวน์โหลดโปรแกรม (Download)

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม GeoCalc Extra จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “GEOCALC.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มใช้โปรแกรม

ที่ “Main Menu” ของเครื่องคิดเลขเลื่อนไปหาไอคอนของโปรแกรมดังรูปด้านล่าง เมื่อกดคีย์ “EXE” แล้วจะเข้าเมนูของโปรแกรม ดังนี้

F1 – Set เลือกรายการคำนวณแปลงพิกัดระหว่าง UTM, Geographic หรือ MGRS

F2 – Src (Source) ป้อนค่าพิกัดที่ต้องการแปลงพิกัด

F3 – Calc คำนวณแปลงพิกัดพร้อมแสดงผลลัพธ์

F5 – Info แสดงเครดิตไลบรารีที่โปรแกรมใช้งาน

F6 – Exit ออกจากโปรแกรม

เลือกรายการคำนวณ (Menu)

ที่เมนูหลักกดคีย์ F1 – Set เพื่อเข้าไปเลือกรายการคำนวณ จะเห็น ระบบพิกัดเริ่มต้น (Source)   และระบบพิกัดปลายทาง (Target) ส่วนด้านล่าง MGRS Precision จะเป็นความละเอียดของระบบพิกัด MGRS (Military Grid Reference System) เลือกได้ 6 ระดับคือ 0, 2, 4, 6, 8, 10

ตัวอย่างที่ 1 แปลงค่าพิกัดจากค่าพิกัดภูมิศาสตร์ไปยังค่าพิกัดยูทีเอ็ม (Geographic to UTM)

ตั้งค่าระบบพิกัดเริ่มต้นและปลายทาง

ตั้งค่าระบบพิกัดต้นทางและปลายทางดังรูป จากนั้นกดคีย์ F6 – OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรมอีกครั้ง กดคีย์ F2 – Src เพื่อป้อนค่าพิกัดภูมิศาสตร์

ป้อนค่าพิกัดละติจูด Latitude 39°57’9.34803″N โดยการป้อน 39-57-9.34803N ค่าลองจิจูด 75°9’54.75490″W ป้อนค่า 75-9-54.75490W เสร็จแล้วกดคีย์ F6 – OK เพื่อออกไปคำนวณ

คำนวณแปลงพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F3 – Calc เพื่อคำนวณจะได้ผลลัพธ์ดังรูปด้านล่าง โปรแกรม

จะแสดงค่าพิกัดเริ่มต้นให้และค่าพิกัดปลายทางคือยูทีเอ็มให้ พร้อมทั้งบอกโซนของยูทีเอ็มให้ กดคีย์ F6 – Done เพื่อออก

ตัวอย่างที่ 2 แปลงค่าพิกัดจากค่าพิกัดยูทีเอ็มไปยังค่าพิกัด MGRS (UTM to MGRS)

กำหนดค่าพิกัดยูทีเอ็ม (UTM) ดังนี้ N: 2642783.110, E: 232030.949 UTM Zone No: 46N กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F1 – Set เพื่อเปลี่ยนรายการคำนวณ ตั้งค่าตามรูปด้านล่าง 

เสร็จแล้วกดคีย์ F6 – OK เพื่อออก

กลับมาเมนูหลักของโปรแกรมกดีย์ F2 – Src เพื่อออกป้อนค่าพิกัดยูทีเอ็มดังนี้ จากนั้นกดคีย์ F6 – OK เพื่อออก

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F3 – Calc เพื่อคำนวณ จะได้ผลลัพธ์ดังรูปด้านล่าง

ตัวอย่างที่ 3 แปลงค่าพิกัดจากค่าพิกัด MGRS ไปยังค่าพิกัดภูมิศาสตร์ (MGRS to Geographic)

กำหนดค่าพิกัด MGRS: 46QCK0907425049 ส่วนขั้นตอนจะขอรวบรัดแสดงด้วยรูปภาพ

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณโค้งแปลงพิกัดภูมิศาสตร์นี้ไฟล์ที่จัดเก็บข้อมุลคือ “GEOCALC.CFG

ก็ตามที่สัญญาไว้ว่าจะไล่รื้อโปรแกรมเก่าๆ ที่ลงมาหลายๆตอนหน้านี้ด้วยระบบติดต่อผู้ใช้ตามไลบรารี mylib ที่ผมใช้อยู่ ติดตามกันตอนต่อไปครับ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 8 โปรแกรมคำนวณสเกลแฟคเตอร์ (Scale Factor)