Category: Surveying

ทดสอบเขียนโปรแกรมไพทอน (Python)  บนเครื่องคิดเลข Casio fx-cg50 Prizm

ทดสอบเขียนโปรแกรมไพทอน (Python) บนเครื่องคิดเลข Casio fx-cg50 Prizm

ไพทอนบนเครื่องคิดเลข

ช่วงนี้ผมมีโอกาสทำงานใกล้ชิดกับภาคสนาม ทำให้มีโอกาสได้จับและใช้เครื่องคิดเลขมากกว่าปกติ ในเวลาที่ผ่านมาไม่ถึงเดือนผมได้ซื้อเครื่องคิดเลข Casio fx-CG50 Prizm เคสสีขาว ที่ซื้อมาเพราะทราบว่าถ้า update OS เป็นรุ่น 3.20 จะสามารถใช้ ไพทอน (Python) ได้ ก็ขอหมายเหตุสักนิดว่าเป็นไมโครไพทอน (Micropython) ที่ทางทีมงาน Micropython ได้พอร์ตออกมาให้มีขนาดเล็กเพื่อเอาไปรันในบอร์ด iOT ได้ หรือบอร์ดที่เป็นไมโครคอนโทรลเลอร์ทั้งหลาย เน้นขนาดเล็ก หน่วยความจำต่ำ กินไฟน้อย ต่ออินเทอร์เน็ตได้ในตัว ผมจะไม่มุ่งไปทางนี้หรอกครับ ในบทความนี้ แต่จะพูดถึงเครื่องคิดเลขคาสิโอ ที่นำเอาไมโครไพทอนมาลงเครื่องคิดเลขรุ่นนี้ เพราะว่าไมโครไพทอนกินหน่วยความจำต่ำ ก็เลยเหมาะสมที่จะเอามารันในเครื่องคิดเลขที่มีทรัพยากรต่ำอยู่แล้ว ให้เกิดประสิทธิภาพมากยิ่งขึ้นไป

เป็นที่ทราบกันว่าไพทอนในปัจจุบันมีความนิยมมากยิ่งขึ้น เนื่องจากเรียนรู้ได้ง่าย เขียนง่าย อ่านง่าย ทรงพลัง แต่สำหรับไมโครไพทอน เนื่องจากออกแบบให้มีขนาดเล็ก ดังนั้นไลบรารีต่างๆที่ใช้ได้ในไพทอนรุ่นใหญ่ จะสามารถนำมาใช้กับไมโครไพทอนได้ต้องมีการพอร์ตใหม่ อาจจะลดฟังก์ชั่นหรือลดสิ่งไม่จำเป็นออก ทำให้มีขนาดเล็กลง ดังนั้นผมทำใจในจุดนี้อยู่แล้ว ว่าไม่สามารถเอาไลบรารีรุ่นใหญ่มารันได้แน่นอนเช่น pyproj, mathplotlib

สำหรับเครื่องคิดเลขที่ใช้ในแวดวงวิศวกรรม โปรแกรมที่เขียนด้วยไมโครไพทอนที่มีไลบรารี math หรืออาจจะเสริมด้วยไลบรารีพวกเมตริก (matrix) น่าจะพอนำมาเขียนใช้งานกันได้

 การพัฒนาโปรแกรมด้วยชุดพัฒนาโปรแกรมภาษาซี (Software Development Kit)

นี่เป็นความข้องใจของผมในฐานะแฟนเครื่องคิดเลขคาสิโอ รุ่น fx-9860G ทางคาสิโอจัดทำ SDK ให้สามารถเขียนโปรแกรมด้วยภาษาซี ที่ผมเขียนโปรแกรมมาแจกใช้ในแวดวงงานสำรวจแล้วหลายโปรแกรม แต่รุ่นนี้กลับไม่ทำมาให้  (ที่จริงไม่ทำมาให้ตั้งแต่ fx-CG10/fx-CG20)ไม่ทราบว่าเพราะเหตุใด เครื่องคิดเลขรุ่นนี้ไม่มี SD Card แต่ทดแทนด้วยการใส่ Flash memory มา 16 MB  ซึ่งก็พอจะใส่โปรแกรมใช้งานได้มากโขอยู่ หรือคิดว่ามีไมโครไพทอน มาให้แล้วน่าจะตอบโจทย์ได้หมด แต่ผมก็ไม่คิดอย่างนั้น ยังมีโปรแกรมเมอร์ภาษาซีอีกพอสมควร และในสภาพแวดล้อมของเครื่องคิดเลขจริงๆ โปรแกรมที่เขียนด้วยภาษาซีจะเร็วกว่าไพทอนอยู่แล้ว แต่ไพทอนได้เปรียบในด้านความง่าย

 เครื่องมือพัฒนาโปรแกรมของชุมชน

ยังมีชุมชนของนักพัฒนาที่สร้าง SDK  ขึ้นมาใช้งานเอง มีประมาณ 2-3 กลุ่มแต่สุดท้ายดูเหมือนไม่มีความเคลื่อนไหวกันมาหลายปีแล้ว เครื่องมือที่มีชื่อเสียงมากที่สุดคือ PrizmSDK และอีกอันคือ mini-SDK ผมเองใช้ไลบรารี MyLib แต่เผอิญผู้พัฒนาได้ทำไว้สำหรับเครื่อง fx-9860G เท่านั้น ไม่เป็นไรขอมุ่งลองไพทอนบนเครื่องคิดเลขรุ่น fx-CG50 นี้ก่อน ถ้าพัฒนาโปรแกรมด้วยภาษาซี ผมก็ยังมุ่งไปที่เครื่องคิดเลข fx-9860G เหมือนเดิม 

ผมลองเขียนโปรแกรมทดสอบเล็กๆลองดูด้วยเครื่องมือ PrizmSDK ก็ได้ดังรูปข้างล่าง (โปรแกรมไม่มีอะไรมีแต่เมนู) เทียบกับโปรแกรม System Manager ที่มากับเครื่อง

คุณสมบัติของเครื่องคิดเลข

โดยรวมรวมแล้วเครื่องคิดเลขนั้นเหมาะสำหรับนักศึกษามาก เพราะมีฟังก์ชั่นคณิตศาสตร์ การเงิน สถิติ มีกราฟมากมายให้ใช้ แต่สำหรับผมแล้วไม่มีอะไรต้องใช้เลย ยกเว้นเรื่องโปรแกรมบนเครื่องคิดเลขอย่างเดียว ถ้าไม่มีสิ่งนี้ก็ใช้เป็นที่ทับกระดาษได้เลย เครื่องรุ่นนี้ใช้โปรเซสเซอร์ตระกูล SH4 ขนาดหน้าจอ 384 x 216 จอ LCD จำนวนสี 65000 สี มีความสว่างพอสมควรและปรับได้ ความกว้างหน้าจอแบบทะแยง 3.17 นิ้ว หน่วยความจำของเครื่อง 60 KB มี Flash memory ที่สามารถเขียนอ่านได้ 16  MB ซึ่งจะเป็นที่เอาไว้เก็บโปรแกรมหรือข้อมูล ใช้ถ่าน AAA 4 ก้อน  เท่าที่ผมเปิดเครื่องใช้บ้างในแต่ละวันมาประมาณสองสัปดาห์ พบว่าแบตเตอรี่ลดลงมานิดหนึ่ง อนาคตอาจจะหาถ่านชาร์จมาใช้ ตอนนี้ใส่อัลคาไลน์ไปก่อน

ประเดิมโปรแกรมด้วยไพทอน

จะลองโปรแกรมทั้งทีผมพยายามให้โปรแกรมมีขนาดซับซ้อนมานิดหนึ่ง  และเรียกใช้โมดูลด้วย คิดไปคิดมาก็เลยจะลองโปรแกรมแปลงค่าพิกัดระหว่างค่าพิกัดภูมิศาสตร์กับค่าพิกัดยูทีเอ็ม เนื่องจากไม่ค่อยมีเวลาเขียน เลยลองหาไลบรารีที่ท่านอื่นได้ทำไว้ ผมเคยเกริ่นไปแล้วข้างต้นว่าไลบรารีรุ่นใหญ่เช่น pyproj ไม่สามารถเอามาใช้ได้ ลองค้นดูพบว่ามีไลบรารีไพทอนเล็กๆ ชื่อ utm มีสัญญาอนุญาตเป็น MIT-License ผมเอาโค้ดมาดัดแปลงนิดหน่อยให้เหมาะสมกับเครื่องคิดเลข แล้วเขียนไปอยู่ในไฟล์ utm.py เพื่อให้สะดวกเวลาเรียกใช้

การเขียนโปรแกรมไพทอน ถ้าไปเขียนบนเครื่องคิดเลข จะชักช้าเสียเวลาครับ เนื่องจากไมโครไพทอน พอร์ตไลบรารีเช่น math แล้ว ดังนั้นถ้าโปรแกรมของเราไม่ได้ใช้อะไรพิศดารมาก ก็สามารถมาเขียนโค้ดบน PyCharm หรือ Idle ได้ ผมเลือก PyCharm เมื่อทดสอบโปรแกรมเสร็จสามารถ โอนโปรแกรมเข้าไปไว้ในเครื่องด้วยการต่อเครื่องคิดเลขด้วยสาย USB เข้ากับคอมพิวเตอร์ที่รันวินโดส์ตามผังด้านล่าง

เมื่อรันโปรแกรมได้ตามความต้องการแล้วจากนั้นก็เอาเครื่องคิดเลขมาต่อกับคอมพิวเตอร์ วินโดส์จะมองเห็นเป็นไดรว์ สามารถใช้ File Explorer ก๊อปปี้โปรแกรมจากคอมพิวเตอร์ไปยังเครื่องคิดเลขได้ ตัวโค้ดโปรแกรมไลบรารีดูได้ด้านล่างครับ


import math
K0 = 0.9996

E = 0.00669438
E2 = E * E
E3 = E2 * E
E_P2 = E / (1.0 - E)

SQRT_E = math.sqrt(1 - E)
_E = (1 - SQRT_E) / (1 + SQRT_E)
_E2 = _E * _E
_E3 = _E2 * _E
_E4 = _E3 * _E
_E5 = _E4 * _E

M1 = (1 - E / 4 - 3 * E2 / 64 - 5 * E3 / 256)
M2 = (3 * E / 8 + 3 * E2 / 32 + 45 * E3 / 1024)
M3 = (15 * E2 / 256 + 45 * E3 / 1024)
M4 = (35 * E3 / 3072)

P2 = (3. / 2 * _E - 27. / 32 * _E3 + 269. / 512 * _E5)
P3 = (21. / 16 * _E2 - 55. / 32 * _E4)
P4 = (151. / 96 * _E3 - 417. / 128 * _E5)
P5 = (1097. / 512 * _E4)

R = 6378137

ZONE_LETTERS = "CDEFGHJKLMNPQRSTUVWXX"

class OutOfRangeError(ValueError):
    pass

def to_latlon(easting, northing, zone_number, hemi):

    northern = (hemi == 'N')

    x = easting - 500000
    y = northing

    if not northern:
        y -= 10000000

    m = y / K0
    mu = m / (R * M1)

    p_rad = (mu +
             P2 * math.sin(2 * mu) +
             P3 * math.sin(4 * mu) +
             P4 * math.sin(6 * mu) +
             P5 * math.sin(8 * mu))

    p_sin = math.sin(p_rad)
    p_sin2 = p_sin * p_sin

    p_cos = math.cos(p_rad)

    p_tan = p_sin / p_cos
    p_tan2 = p_tan * p_tan
    p_tan4 = p_tan2 * p_tan2

    ep_sin = 1 - E * p_sin2
    ep_sin_sqrt = math.sqrt(1 - E * p_sin2)

    n = R / ep_sin_sqrt
    r = (1 - E) / ep_sin

    c = _E * p_cos**2
    c2 = c * c

    d = x / (n * K0)
    d2 = d * d
    d3 = d2 * d
    d4 = d3 * d
    d5 = d4 * d
    d6 = d5 * d

    latitude = (p_rad - (p_tan / r) *
                (d2 / 2 -
                 d4 / 24 * (5 + 3 * p_tan2 + 10 * c - 4 * c2 - 9 * E_P2)) +
                 d6 / 720 * (61 + 90 * p_tan2 + 298 * c + 45 * p_tan4 - 252 * E_P2 - 3 * c2))

    longitude = (d -
                 d3 / 6 * (1 + 2 * p_tan2 + c) +
                 d5 / 120 * (5 - 2 * c + 28 * p_tan2 - 3 * c2 + 8 * E_P2 + 24 * p_tan4)) / p_cos

    return (180/math.pi*(latitude),
            180/math.pi*(longitude) + zone_number_to_central_longitude(zone_number))


def from_latlon(latitude, longitude, force_zone_number=None):
    if not -80.0 <= latitude <= 84.0:
        raise OutOfRangeError('latitude out of range (must be between 80 deg S and 84 deg N)')
    if not -180.0 <= longitude <= 180.0: raise OutOfRangeError('longitude out of range (must be between 180 deg W and 180 deg E)') lat_rad = math.pi/180*(latitude) lat_sin = math.sin(lat_rad) lat_cos = math.cos(lat_rad) lat_tan = lat_sin / lat_cos lat_tan2 = lat_tan * lat_tan lat_tan4 = lat_tan2 * lat_tan2 if force_zone_number is None: zone_number = latlon_to_zone_number(latitude, longitude) else: zone_number = force_zone_number #zone_letter = latitude_to_zone_letter(latitude) if (latitude >= 0):
      hemi = 'N'
    else:
      hemi = 'S'

    lon_rad = math.pi/180*(longitude)
    central_lon = zone_number_to_central_longitude(zone_number)
    central_lon_rad = math.pi/180*(central_lon)

    n = R / math.sqrt(1 - E * lat_sin**2)
    c = E_P2 * lat_cos**2

    a = lat_cos * (lon_rad - central_lon_rad)
    a2 = a * a
    a3 = a2 * a
    a4 = a3 * a
    a5 = a4 * a
    a6 = a5 * a

    m = R * (M1 * lat_rad -
             M2 * math.sin(2 * lat_rad) +
             M3 * math.sin(4 * lat_rad) -
             M4 * math.sin(6 * lat_rad))

    easting = K0 * n * (a +
                        a3 / 6 * (1 - lat_tan2 + c) +
                        a5 / 120 * (5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500000

    northing = K0 * (m + n * lat_tan * (a2 / 2 +
                                        a4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c**2) +
                                        a6 / 720 * (61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2)))

    if latitude < 0:
        northing += 10000000

    return easting, northing, zone_number, hemi


def latitude_to_zone_letter(latitude):
    if -80 <= latitude <= 84: return ZONE_LETTERS[int(latitude + 80) >> 3]
    else:
        return None


def latlon_to_zone_number(latitude, longitude):
    if 56 <= latitude < 64 and 3 <= longitude < 12:
        return 32

    if 72 <= latitude <= 84 and longitude >= 0:
        if longitude <= 9:
            return 31
        elif longitude <= 21:
            return 33
        elif longitude <= 33:
            return 35
        elif longitude <= 42:
            return 37

    return int((longitude + 180) / 6) + 1


def zone_number_to_central_longitude(zone_number):
    return (zone_number - 1) * 6 - 180 + 3


โปรแกรมแปลงพิกัดภูมิศาสตร์ในภาคไพทอน

ผมเขียนไพทอนเป็นโมดูลอีกโมดูลเพื่อเรียกใช้ไลบรารี ตั้งชื่อว่า UTM2GEO.py โดยที่เขียนเมนูติดต่อการใช้งานง่ายๆ

from utm import *
   
def print_menu():
  print(5*'-',"MENU",5*'-')
  print('1: UTM to GEO')
  print('2: GEO to UTM')
  print('0: Exit')

def geo2utm(lon,lat):
  east,north,zn,hem=from_latlon(lat,lon)
  print("North={0:11.3f}".format(north))
  print("East={0:10.3f}".format(east))  
  print("UTM Zone No={0:0d}{1}".format(zn,hem))
    
def utm2geo(e,n,zoneno,hemi):
  lat,lon=to_latlon(e,n,zoneno,hemi)
  print("Latitude={0:11.7f}".format(lat))
  print("Longitude={0:10.7f}".format(lon))   
    
loop=True
while loop:   
  print_menu()
  choice=int(input('Selection[0-2]'))
  if (choice==0):
    loop=False
  elif (choice==1):
    loop=True
    y=float(input("Northing="))
    x=float(input("Easting="))
    zn=int(input("Zone No="))
    hem=input("Hemi (N/S)=")
    utm2geo(x,y,zn,hem)
  elif (choice==2):
    loop=True
    y=float(input("Latitude="))
    x=float(input("Longitude="))
    geo2utm(x,y)   

วิธีก๊อปปี้โปรแกรม

จากนั้นผมก๊อปปี้สองไฟล์คือ utm.py  และ UTM2GEO.py ลงบนไดรว์เครื่องคิดเลขดังนี้

ผมเก็บไว้ที่ไดเรคทอรี \SAVE-F\PROGRAM เวลาจะถอดสาย USB เพื่อเลิกการเชื่อมต่อต้อง Safely removal โดยการคลิกเมาส์ขวา “Eject” ที่ File Explorer จากนั้นมาที่เครื่องคิดเลขจากให้กดคีย์ “EXE” และ “EXIT” ตามลำดับ ถ้าไม่ทำไฟล์อาจจะไม่ได้ซิงค์กันอาจจะหายหรือไม่สมบูรณ์ได้ ที่เครื่องคิดเลขกดคีย์ “MENU” เลือก “Python

แปลงพิกัดจากค่าพิกัดภูมิศาสตร์เป็นค่าพิกัดยูทีเอ็ม

จากรูปด้านบนกดคีย์ F1-Run จะเห็นหน้าจอขึ้นเมนูติดต่อมาง่ายๆ

เราจะเลือกแปลงพิกัดจากค่าพิกัดภูมิศาสตร์ไปเป็นค่าพิกัดยูทีเอ็มเลือกกดคีย์ “2” ที่เครื่องคิดเลขแล้วกดคีย์ “EXE” ป้อนค่าพิกัด Latitude = 39.95259668 Longitude  = -75.15132081 (ป้อนเป็นหน่วยดีกรี ในตอนนี้ยังไม่รับค่าแบบอื่น) จะได้ผลการคำนวณออกมา เนื่องจากในตอนนี้ไม่มีคำสั่งเบรคการแสดงผลเมื่อเขียนด้วยไพทอน (เอาละจะมาบ่นทีหลัง ว่าใส่ไพทอนมาแล้วทางคาสิโอไม่ให้เครื่องมืออะไรมาเลย) การจะดูผลลัพธ์ ผู้ใช้ต้องกดคีย์ “0” เพื่อออกจากโปรแกรมและใช้ลูกศรกดขึ้นไปทางด้านบนเพื่อไปดูผลลัพธ์

จะได้ค่า Northing = 4422506.896 Easting = 487074.371 อยู่ในโซน 18N

แปลงพิกัดจากค่าพิกัดยูทีเอ็มเป็นค่าพิกัดภูมิศาสตร์

ทำการรันโปรแกรมใหม่อีกครั้ง ที่เมนูเลือกกดเลข “1” ป้อนค่าพิกัด Northing = 2642783.110 Easting =232030.949 UTM Zone No = 46 Hemi = N

ดูค่าผลลัพธ์ได้ (กดคีย์ “0” ออกจากเมนูก่อนแล้วเลื่อนขึ้นไปดู)

สรุปการใช้งาน

ตอนแรกผมคาดหวังจากที่ทางคาสิโอเอาไมโครไพทอนมาลงเครื่องคิดเลขรุ่นนี้ ยังไงการเขียนโปรแกรมใช้งานยังไงๆผลลัพธ์ที่ออกมาก็ต้องระดับเทพ เพราะไพทอนมันทรงพลังด้วยตัวของมัน แต่เมื่อลองแล้วผิดหวังมาก จนบัดนี้คาสิโอ้ยังไม่ได้ออกคู่มือแสดงฟังก์ชั่นที่ไพทอนสามารถเรียกมาใช้ได้ มีฟังก์ชั่น input กับ print สองฟังก์ชั่นนี้เท่านั้น เพียงแค่ผมค้นหาฟังก์ชั่น clear screen หน้าจอยังทำไม่ได้ ฟังก์ชั่นที่ต้องการสนับสนุนได้แก่การเขียนเมนูที่เรียกใช้ด้วยคีย์ F1 ถึง F6 การปริ๊นท์แสดงสีต่างๆ การเรียกใช้ฟังก์ชั่นกราฟต่างๆหรือพล็อทกราฟ หรือใช้งานเมตริก เป็นต้น

เอาละตอนนี้ไพทอนที่ปรากฎบน OS รุ่น 3.20 เพิ่งออกมาเตือนตุลาคม 2018 (ขณะที่เขียนบทความนี้เดือนพฤศจิกายน 2018) คงต้องให้เวลาสักพักว่าจะเป็นอย่างไร บอกตามตรงว่าคงต้องเอาเครื่องคิดเลขรุ่นนี้มาทับกระดาษอีกสักพักใหญ่ๆ

การเล็งสกัดย้อน (Resection) ด้วยการวัดมุมภายใน ระยะทางและและมุมแบริ่งด้วยวิธีการคำนวณแบบ Least Squares (ตอนที่ 2)

 ตั้งสมการ Observation Equation

ขอทบทวน ค่า aik, bik  เรียกว่า  direction coefficients และ  cik, dik เรียกว่า distance coefficients

ในกรณีวัดมุมเล็งสกัดย้อนจากสมการด้านบนและเอาแทนที่ในสมการด้านล่าง

เขียนให้ดูง่ายดังนี้  zi  คือค่าอะซิมัทเริ่มต้น

เราจะมาคำนวณหาค่า aik, bik กันก่อน มาคำนวณที่จุด P ค่าพิกัด N = 193939.897 E = 110879.464 ไปสถานีหลักฐานจุดที่ 1  ที่มีค่าพิกัด N = 192315.290 E = 120383.500 คำนวณระยะทางได้ 9641.890 เมตร คำนวณหาอะซิมัทได้ 99°42’1.1″ ดังนั้น aik = aP1 = -sin( 99°42’1.1″) / (9641.890 * 100) * 3600 * 180/3.141592654 = -0.2109 second (มุมแปลงเป็นหน่วยฟิลิปดา ระยะทางแปลงหน่วยเป็น ซม.)

bik = bP1 = cos(99°42’1.1″) / (9641.890 * 100) * 3600 * 180/3.141592654 = -0.0360 second

เราจะฟอร์มสมการในรูปแบบ v + Bx = f โดยที่

v คือเมตริกเวคเตอร์ของ residual

B คือเมตริกของค่า coefficient ของมุม ระยะทาง

f คือเมตริกความต่างของค่าที่คำนวณและค่าที่รังวัด

ผมคำนวณหาค่าaik, bik ทุกๆการรังวัดมุมมาดังนี้

มาทบทวนดูสมการระยะทางดังนี้้

คำนวณหา cik = cP1 = cos(99°42’1.1″) = -0.1685

dik= dP1 = sin(99°42’1.1″) = 0.9857

คำนวณทุกการรังวัดระยะทางมาได้ดังตาราง

สมการสุดท้ายคือการวัดเล็งสกัด (Bearing intersection)

จากสมการ v + Bx = f มาพิจารณาฝั่งซ้าย v + Bx ก่อน ผมฟอร์มเป็นเมตริกดังนี้

มาดูเมตริก เป็นเมตริกแสดงความต่างระหว่างค่าที่คำนวณกับค่ารังวัด f = Computed – Observation มาดูตามตาราง น่าจะเข้าใจได้ง่าย ค่า diff ในตารางก็คือค่า f นั่นเอง โปรดระวังหน่วยมุมจะเป็นฟิลิปดา (second) หน่วยระยะทางใช้เป็นซม.

ยกตัวอย่างค่าของเมตริก f เริ่มจากการวัดเล็งสกัดย้อน จะใช้มุมอะซิมัทที่ได้จากการคำนวณมาเป็นตัวเริ่มต้น ค่าจากจุด P ไปสถานีหลักฐานที่ 1 จะได้ค่าความต่างเท่ากับ 0.0 ต่อไปจากจุด P ไปสถานีหลักฐานที่ 2 คำนวณได้ 119.5116959 จากมุมที่วัดมา 99° 42′ 1.1″ + 19° 48′ 41″ = 119.5116957 ได้ค่าความต่าง = (119.5116959 – 119.5116957) * 3600 =  0.0008 second

ที่ง่ายที่สุดคือวัดระยะทางจากจุด P ไปสถานีหลักฐานจุดที่ 1 ได้ 9641.795 เมตร ส่วนการคำนวณจากค่าพิกัด P เริ่มต้นมายังค่าพิกัดสถานีหลักฐาน 1 ได้ค่าคำนวณ = 9641.890 เมตร ความต่าง = (9641.890 – 9641.795) * 100 = 9.5 ซม.

สุดท้ายสามารถนำค่ามาเขียนเป็นเมตริก ดังนี้

v + Bx = f

จะเห็นว่าสมการนี้ติดค่า residual ของเมตริก v และเมตริก x ไม่สามารถคำนวณต่อไป แต่หัวใจของ least squares ตามชื่อเลยครับคือผลรวมค่ายกกำลังสองของ  residual ที่ได้ค่าน้อยที่สุด

ถ้าค่า weight หรือน้ำหนักของการรังวัดไม่เท่ากันจะต้องคูณน้ำหนักเข้าไปด้วย

จากสมการ v + Bx = f แทนค่า v = f – Bx ในสมการ

ค่า Φ จะมีค่าน้อยที่สุด ดังนั้นจะหาอนุพันธ์ (ดิฟ) โดยที่ให้ x มีค่าเท่ากับศูนย์

ที่นี้ก็จำง่าย Nx = t โดยที่ N = BTWB และ f = BTW

สุดท้ายสามารถหาค่าเมตริก x = N-1เมื่อได้ค่า x แล้วก็สามารถย้อนไปหาเมตริก residual (v) ได้ ตามสมการ v + Bx = f

ผลลัพธ์การคำนวณรอบที่ 1

ผมใช้ฟังก์ชั่นของ excel หาเมตริกได้ดังนี้


ได้เมตริก x คือค่าปรับแก้หน่วยเป็นซม. เอาพิกัดจุด P และมุมอะซิมัท เริ่มต้นมาปรับได้ดังนี้ N = 193939.897 – 0.090829= 193939.806 ค่า E = 110879.464 + 0.04695 =  110879.511 และค่ามุมอะซิมัท = 99°42’1.1″ – 2.1156″ = 99° 41′ 58.99″ (99.6997191)

ผลลัพธ์การคำนวณรอบที่ 2

เอาค่าพิกัดของจุด P ที่ได้จากรอบที่ 1 มาเป็นตัวเริ่มต้น พร้อมทั้งมุมอะซิมัทด้วย

ตั้งสมการเมตริก v + Bx = f ได้ดังนี้

แก้สมการ Nx = t ได้ดังนี้

จะได้เมตริก x ค่าใหม่ เอาพิกัดจุด P และค่าอะซิมัทมาปรับได้ดังนี้ N =193939.806  – 0.0016 = 193939.790  และ E = 110879.511 + 0.0085 = 110879.519  ค่าอะซิมัท = 99° 41′ 58.99″ + 0.137″ = 99°41′ 59.13″ (99.6997572)

ผลลัพธ์การคำนวณรอบที่ 3

ต่อไปฟอร์มรูปเมตริก v + Bx = f สังเกตว่าเมตริก B ค่าเปลี่ยนไปเล็กน้อยมาก

คำนวณหาเมตริก x จากสมการ Nx = t => x = N-1t

จะได้เมตริก x ค่าใหม่ เอาพิกัดจุด P และค่าอะซิมัทมาปรับได้ดังนี้ N = 193939.790- 0.0003 = 193939.787  และ E = 110879.519 + 0.0001 = 110879.521 ค่าอะซิมัท = 99° 41′ 58.99″ + 0.024″ = 99°41′ 59.15″ (99.6997639)

มาถึงตอนนี้จะเห็นว่าค่าปรับแก้ ในเมตริก x  น้อยมากอยู่ในระดับเศษส่วนของมิลลิเมตร ΔN = -0.285 cm ΔE = 0.152 cm ดังนั้นแสดงว่าค่าที่คำนวณมานั้น convergence แล้ว ดังนั้นผมสรุปว่าผลลัพธ์ดังนี้

ค่าพิกัดจุด P (Free Station)

N = 193939.787 E = 110879.521 ค่าอะซิมัทจากจุด P ไปสถานีหลักฐานที 1 = 99°41′ 59.15″

 ตรวจสอบผลลัพธ์การคำนวณด้วย Microsurvey StarNet

เพื่อให้มั่นใจว่าผลลัพธ์ที่ได้จะถูกต้อง ผมใช้ Microsurvey StarNet  มาเป็นตัวช่วย ข้อมูลสถานีรังวัดไม่เกิน ดังนั้นผมยังใช้เวอร์ชั่นทดลองใช้ได้อยู่ เมื่อเปิดโปรแกรมมาผมใช้เมนู Options -> Project ตั้งค่าดังนี้ เปลี่ยนหน่วยเป็นเมตรให้เรียบร้อยก่อนที่ Adjustment > Units > Linear > Meters

จากนั้นปรับ  standard error  ของกล้องวัดมุมและระยะทางให้สอดคล้อง ผมปรับระยะทาง Distance constant 4mm ปรับ Distance PPM = 20 ความหมายตัวนี้คือ 4mm ± 20mm/1,000,000 x L (m) ถ้าวัดระยะทาง 1000 เมตร error จะอยู่ประมาณ 24 mm (กล้อง Total Station สมัยปัจจุบันเรื่องระยะทางทำได้ดีกว่านี้มาก)

จากนั้นป้อนข้อมูลไปดังนี้ หมายเหตุว่า C = Control Point ไม่มีเครื่องหมาย ! !  ตามหลังแสดงว่าเป็นค่าเริ่มต้นหรือประมาณการ A = Angle, D = Distance และ B = Bearing ถ้าสนใจก็ไปดาวน์โหลดโปรแกรมของ Microsurvey StarNet  มาทดลองได้

แล้วคัดลอกข้อมูลด้านล่างแล้วไปวางลงในหน้า  input เพื่อลองคำนวณดูผลลัพธ์กันได้

# Resection 2D combined resection, distance and bearing intersection.

# Approximate coordinates for the unknown free station
#
C P 193939.897 110879.464

# Coordinates for the known stations
C 1 192315.290 120383.500 ! !
C 2 189545.730 118642.430 ! !
C 3 188084.770 112278.210 ! !
C 4 190640.940 109654.540 ! !
C 5 190044.860 108065.980 ! !
C 6 194455.370 110632.930 ! !
A P-1-2 19-48-41
A P-1-4 100-40-19
A P-1-5 116-8-36
A P-1-6 234-44-22

#Distance measurements
D P-1 9641.795
D P-3 6019.802
D P-5 4804.793

#Bearing measurements
B 1-P 279-41-59.5
B 3-P 346-33-52
B 5-P 35-50-34

จากนั้นใช้เมนู Run > Adjustment

สรุปสถิติการคำนวณดังนี้ จะเห็นว่ามีจำนวนข้อมูลรังวัดมา 10 (วัดมุมเล็งสกัดย้อน 4 มุม ระยะทาง 3 ระยะ วัดมุมเล็งสกัด 3 มุม จำนวนสิ่งที่ไม่รู้ค่า 2 ค่า คือค่าพิกัด  x,y ของจุด P

Adjustment Statistical Summary
==============================

Iterations = 2

Number of Stations = 7

Number of Observations = 10
Number of Unknowns = 2
Number of Redundant Obs = 8

 

Adjusted Coordinates (Meters)

Station N E Description
P 193939.788830 110879.521213
1 192315.290000 120383.500000
2 189545.730000 118642.430000
3 188084.770000 112278.210000
4 190640.940000 109654.540000
5 190044.860000 108065.980000
6 194455.370000 110632.930000

จะได้ค่าพิกัดจุด  P ดังนี้ N = 193939.789 E = 110879.521 ต่างจากที่ผมคำนวณมาเล็กน้อย อย่างแรกคือผมไม่ได้ใช้น้ำหนัก  weight  แต่ของ MicroSurvey Starnet บังคับใช้ โปรแกรมไม่ได้แสดงค่าสมการให้ดู จึงตรวจสอบไม่ได้ว่าเมตริกของ W เป็นอย่างไร อย่างที่สองคือการคำนวณวนลูปสองรอบเท่านั้น แสดงว่าอัลกอริทึ่มอาจจะใช้อนุกรมเทเลอร์ลำดับที่ 2 ด้วย ซึ่งผมใช้ลำดับเดียวจึงต้องวนลูปมากกว่า

เป็นอย่างไรบ้างครับ เรื่องคำนวณ  least squares adjustment ตอนสมัยเรียนมหาวิทยาลัยถือว่าเป็นวิชาที่ยากสำหรับนักศีกษา แต่ถ้ามีโอกาสได้ลองคำนวณดูไปทีละขั้นตอน สำคัญคือต้องลงมือเองด้วย จึงจะเข้าใจ บางทีรายละเอียดเช่นอนุกรมเทเลอร์ การหาค่าอนุพันธ์ อาจจะยาก ผมไม่ได้จำหรอกครับ เพียงแต่ติดก็กลับมาเปิดตำรา หลงๆลืมๆไปบ้างตามวัยของผม แต่ปัจจุบันความได้เปรียบคือตำราหาอ่านได้ง่ายในอินเทอร์เน็ต โปรแกรมช่วยคำนวณแบบ  Microsurvey Starnet หรือโปรแกรมค่ายอื่นๆก็มีมากมาย ที่จะมาช่วยทำให้การคำนวณง่าย แต่ถ้ามีพื้นฐานบ้างก็จะได้เปรียบ  ติดตามกันต่อไปครับ

การเล็งสกัดย้อน (Resection) ด้วยการวัดมุมภายใน ระยะทางและและมุมแบริ่งด้วยวิธีการคำนวณแบบ Least Squares (ตอนที่ 1)

จากที่เขียนโปรแกรมสำหรับเครื่องคิดเลขคำนวณเล็งสกัดย้อนสำหรับเครื่องคิดเลข Casio fx-9860G II SD ทำให้นึกถึงวิธีการคำนวณแบบ least squares ที่เป็นพื้นฐานเคยร่ำเรียนมา โดยเฉพาะการรังวัดในปัจจุบันที่การรังวัดระยะทางด้วยกล้องประมวลผลรวมทำได้ง่าย เมื่อรวมกับการรังวัดมุม จะทำให้มีค่าเกินหรือ redundant มาคำนวณในวิธีแบบ least square ได้ การรังวัดแบบเล็งสกัดย้อนบางตำราเรียกว่า free station

การวัดเล็งสกัดย้อนในยุคแรกจะวัดมุมจากหมุดสถานีหลักฐานกันเป็นหลัก และหมุดสถานีหลักฐานต้องมีค่าพิกัดและมีจำนวนอย่างน้อยสามหมุด ดังนั้นการวัดมุมอย่างน้อยสองมุมจะเพียงพอต่อการมาคำนวณ ในบทความนี้ผมจะพาไปทัวร์การคำนวณวิธี least squares ด้วยการใช้การรังวัดผสมประกอบด้วยการวัดมุมภายใน วัดระยะทาง และการวัดมุมแบริ่งหรือการวัดภาคทิศ จากนั้นจะยกตัวอย่างพร้อมทั้งวิธีการคำนวณ ปิดท้ายทดสอบผลลัพธ์การคำนวณด้วยโปรแกรม Microsurvey StarNet

การวัดแบบ 2D

การวัดแบบนี้จะวัดมุมราบและระยะราบก็พอนำมาคำนวณหาค่าพิกัดของ free station ได้ ตัวอย่างที่ผมจะแสดงการคำนวณในลำดับต่อไปจะเป็นการวัดแบบ 2D เพื่อลดความซับซ้อน

การวัดแบบ 3D

การวัดระยะทางจะวัดแบบ Slope distance วัดมุมดิ่ง ถ้าทราบค่าระดับของหมุดสถานีหลักฐานและวัดความสูงของเป้าที่ตั้งบนสถานีหมุดหลักฐาน จากนั้นวัดความสูงกล้อง เมื่อนำมาคำนวณร่วมกับมุมราบแล้วจะได้ค่าพิกัดของ free station รวมทั้งค่าระดับด้วย

แนะนำตำรา

เมื่อผมกลับไปดูวิธีการคำนวณด้วย least square แต่กลับพบกับความนะจังงัง ว่าความรู้ที่รับการประสิทธิประสาทมาบัดนี้ได้คืนท่านอาจารย์ที่มหาวิทยาลัยไปจนหมดแล้วสิ้นเชิง นั่งงงกับการตั้งสมการ Observation Equation อยู่นานพอสมควร เมื่อไม่เป็นผลก็ต้องกลับไปหาตำราค่อยๆพลิกความทรงจำกลับมาใหม่

ตำราที่จะแนะนำให้อ่านเป็นของ Mr.Rod Deakin (Rodney Edwin Deakin) ถ้าดูตามโปรไฟล์ก่อนจะเกษียณเป็นอาจารย์ให้มหาวิทยาลัยสอนเรื่อง Engineering Survey มาก่อน ตำราหรือบทความที่แต่งนั้นมีความหลากหลายมากในเว็บไซต์ส่วนตัวนี้ อ่านง่าย เพลินจนลืมไปว่าเรื่องที่อ่านนั้นยาก

ตามไปดูหน้า least squares ลองเลื่อนไปด้านล่างดูเรื่อง “Notes on Least Squares” คือตำราที่จะมาแนะนำกันมีทั้งหมด 10 บท เนื่องจากผมพอมีพื้นฐานมาบ้างเล็กน้อย จึงไม่ได้อ่านเรียงหน้าตั้งแต่บทที่ 1 แต่อาศัยข้ามไปอ่านบทที่ 7 ก่อน พอเจอเมตริกผมงงก็ข้ามไปอ่าน “Appendix A” เฉพาะเรื่องเมตริก บวก ลบ คูณ อินเวอร์ส แล้วค่อยกลับมาอ่านบทอื่นๆอีกที ดังนั้นคนที่ห่างเรื่องนี้นานๆแนะนำให้ไปดูเรื่องเมตริกอันดับแรก

บทที่ 7 อนุกรมเทเลอร์

สำหรับการคำนวณเล็งสกัดย้อนด้วยวิธี least square ปฐมบทจะอยู่ที่บทที่ 7 เริ่มต้นจากอนุกรมเทเลอร์ เหตุที่เราต้องใช้เพราะว่าสมการที่จะนำมาคิด  resection นั้นไม่ใช่สมการแบบเชิงเส้นหรือ linear equation ดังนั้นจะต้องมีการถอดสมการเชิงเส้นออกมาและอยู่ในรูปอนุกรม เพื่อให้สามารถนำมาคำนวณได้ จะมีตัวอย่างสมการ Observation Equation 2 ตัวอย่างคือ

  • วัดมุม (Measure direction)
  • วัดระยะทาง (Measure distance)

บทที่ 9 คำนวณเล็งสกัดย้อน (Least Squares Resection)

บทนี้จะเริ่มตั้งแต่ตั้งสมการ  Observation Equation (ไม่เชิงเส้น) ของการวัดมุม จาก free station ไปยังหมุดสถานีหลักฐาน จากนั้นจะถอดสมการไม่เชิงเส้นด้วยอนุกรมเทเลอร์ แล้วก็มีตัวอย่างแสดงวิธีการคำนวณ

บทที่ 10 คำนวณเล็งสกัด (Least Squares Bearing Intersection)

ผู้อ่านอาจจะสังเกตสองคำคือเล็งสกัดกับเล็งสกัดย้อน

  • เล็งสกัดย้อน (Resection) คือไปตั้งกล้องที่  free station แล้ววัดมุมภายในไปหาสถานีหมุดหลักฐาน

  • เล็งสกัด (Bearing Intersection) จะเป็นการวัดมุมแบริ่ง ตัวอย่างได้แก่การวัดดาวเหนือในสมัยก่อน คือเราจะมีหมุดคู่เป็น base line ต้องการทราบมุมแบริ่งของ base line นี้ก็ตั้งกล้องที่หมุดตัวแรกแล้วอาศัยวัดดาวเหนือกับหมุดอีกตัวบน base line ดังนั้นถ้าวัดแบริ่งสัก 2 base line ไปตัดกันก็จะได้ค่าพิกัด

การถอดสมการเล็งสกัดย้อนด้วยอนุกรมเทเลอร์

ต่อไปมาลองดูสมการที่เราใช้คำนวณหามุมและระยะทาง โดยที่ทราบค่าพิกัด ซึ่งเป็นสมการพื้นฐานของงานสำรวจ ในที่นี้เป็นสมการไม่เชิงเส้น เราจะมาถอดสมการออกมาเป็นเชิงเส้นด้วยอนุกรมเทเลอร์ แผนผังด้านล่างเป็นงานเล็งสกัดย้อน ตั้งกล้องที่จุด Pi วัดมุมไปหาสถานีหลักฐานที่ทราบค่าพิกัดคือจุด  P1, P2, P3, … Pk

การวัดมุมในทางปฏิบัติจะส่องไปหาสถานีแรก P1 ตั้งมุมราบเป็น 0 แล้วกวาดไปสถานีที่ 2 วัดมุมได αi1 กวาดไปหาสถานีหลักฐาน P2 วัดมุมได้ α12 ทำเช่นนี้เรื่อยๆ จนถึงสถานีหลักฐาน Pk จะได้มุม αik แต่ในงานสำรวจด้านตรีโกณมิติเราจะไม่คำนวณโดยใช้มุมภายในแต่จะใช้มุมอะซิมัท ดังนั้นมุมภายในเหล่านี้ต้องเปลี่ยนเป็นเทอมของมุมอะซิมัททั้งหมด ซึ่งไม่ได้ยุ่งยากอะไร ถ้าทราบมุมอะซิมัทที่ไปหาสถานีแรก P1 ก็จะทราบอะซิมัทสถานีที่เหลือทั้งหมด แต่ในความเป็นจริงเราไม่ทราบ เพราะว่าค่าพิกัด P1 ยังไม่ทราบในตอนนี้

สำหรับสมการคำนวณหาอะซิมัทและระยะทางระหว่างจุด Pi และ Pk เมื่อทราบค่าพิกัดคำนวณได้ดังสมการ

เป็นสมการไม่เชิงเส้นครับ ทำการถอดสมการด้วอนุกรมเทเลอร์สมการมุมอะซิมัทมาได้ดังนี้ หมายเหตุผมจะพาไปแบบรวบรัด รายละเอียดอ่านได้ที่ตำราที่แนะนำไปข้างต้น

โดยที่ E = E0 + ΔE และ N = N0 + ΔN ส่วน E0 และ N0 คือค่าเริ่มต้นเป็นค่าประมาณการ ส่วนค่า ΔE, ΔN เป็นค่าปรับแก้ (correction) ซึ่งสองตัวนี้จะคำนวณได้จากสมการ least squares ที่กำลังจะว่ากันต่อไป และถ้าดูสมการจะเห็นว่าติดค่าอนุพันธ์ (ดิฟ) ซึ่งค่าดิฟหาได้ดังนี้

จากสมการด้านบน aik, bik เรามีค่าประมาณการเริ่มต้น Ei, Ni ดังนั้นสามารถหาค่าพวกนี้ได้ มาดูสมการระยะทางค่าดิฟ หาได้ดังนี้

จากสมการด้านบน cik, dik เรามีค่าประมาณการเริ่มต้น Ei, Ni ดังนั้นสามารถหาค่าพวกนี้ได้เช่นเดียวกัน

ตั้งสมการ Observation Equation สำหรับการวัดมุมภายใน (เล็งสกัดย้อน)

สมการ Observation Equation เป็นสมการที่เป็นหัวใจของการคำนวณ least squares ถ้าตั้งสมการนี้ได้ก็สามารถคำนวณต่อได้ แต่งานรังวัดถ้าวัดเกินมาจะมี residual เป็นส่วนเกิน สมการ Observation Equation ของการวัดมุมอะซิมัทแสดงได้ดังนี้

vik คือ residual คงไม่ลืมกันนะว่า มุมอะซิมัท Øik จากสถานีตั้งกล้องไปยังแต่ละสถานีหมุดหลักฐานเท่ากับ อะซิมัทไปหมุดสถานีหลักฐานตัวแรก Zi บวกด้วยมุมราบที่กวาดไป αik เขียนในรูปอนุกรมเทเลอร์ดังนี้

ในกรณีงานรังวัดเล็งสกัดย้อน ΔNk และ ΔEk ทราบค่าพิกัดดังนั้นเทอมตัวนี้จะเป็นศูนย์ กลายเป็นสมการนี้

ตั้งสมการ Observation Equation สำหรับการวัดระยะทาง

คล้ายๆกับสมการสำหรับการวัดทิศทาง แสดงได้ดังนี้

เขียนในรูปอนุกรมเทเลอร์

ตั้งสมการ Observation Equation สำหรับการวัดแบริ่ง (เล็งสกัด)

ถือว่าเป็นอาหารเสริมก็แล้วกัน สมัยนี้ยุค GNSS  คงหายากแล้วสำหรับการวัดภาคทิศอะซิมัทด้วยการวัดดาว

สมการเดียวกับที่เราใช้เล็งสกัดย้อน แต่ในที่นี้เราทราบค่าพิกัด Nk, Ek  ทำให้ ΔNk และ ΔEk เทอมตัวนี้จะเป็นศูนย์ และสมการจะคงเหลือดังนี้

ตัวอย่างงานรังวัดเล็งสกัดย้อนแบบรวมวัดมุม ระยะทาง และรังวัดภาคทิศ

มาถึงตอนนี้ผู้อ่านบางท่านเห็นสมการแล้วอาจจะงงงวยเหมือนผมในตอนแรกๆ มาลองแก้สมการดูจากตัวอย่างโจทย์ ที่นี้จะทำให้เข้าใจมากขึ้น ดูรูปด้านล่าง ตั้งกล้องที่จุด P ทำการรังวัดโดยที่วัดมุมไปยังสถานีหลักฐาน โจทย์ตัวนี้เป็นโจทย์ที่ผมเจอในอินเทอร์เน็ต เมื่อค้นหาการคำนวณเล็งสกัดย้อนแบบวิธีคำนวณ least square ดูได้ที่ลิ๊งค์นี้ โจทย์ที่จะคำนวณเปิดไปดูได้หน้าท้ายๆ

กำหนดค่าพิกัดหมุดสถานีหลักฐานดังตารางด้านล่าง วัดมุมโดยที่เล็งไปที่สถานี 1 ตั้งมุมราบเป็นศูนย์แล้ววัดมุมไปที่สถานี 2, 4, 5 และ 6 ทำการวัดระยะทางไปที่สถานี 1, 3  และ 5  รังวัดภาคทิศ (วัดดาว) ที่สถานี 1, 3 และ 6 ดังตารางด้านล่าง

คำนวณหาค่าพิกัดจุดตั้งกล้องโดยประมาณ

ผมใช้เครื่องคิดเลข fx 9860 GII SD คำนวณหาค่าพิกัดของ P  ด้วยโปรแกรม Resection ป้อนค่าพิกัดและมุมได้ดังนี้

จุด A, B และ C  ของเครื่องคิดเลขก็คือจุดที่ 1, 2 และ 6 ของโจทย์ด้านบนตามลำดับ

ผมจะใช้ค่าจุด P ที่ค่าพิกัดโดยประมาณ N = 193939.897 E = 110879.464 เพื่อเป็นค่าเริ่มต้นในการคำนวณด้วย least squares

เนื่องจากบทความยาวมาก ติดตามกันตอนที่ 2 ต่อนะครับ

Update: โปรแกรมคำนวณเล็งสกัดย้อนฉบับปรับปรุง (Resection) สำหรับเครื่องคิดเลขเทพ Casio fx 9860G II SD

Update: โปรแกรมคำนวณเล็งสกัดย้อนฉบับปรับปรุง (Resection) สำหรับเครื่องคิดเลขเทพ Casio fx 9860G II SD

ผมเขียนเรื่องการคำนวณเล็งสกัดย้อน (Resection) จากตอนก่อนหน้านี้ด้วยอัลกอริทีมใหม่ของ Josep M. Font-Llagunes อ่านได้ที่

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่


ในตอนนี้ผมจะมาเรียบเรียงโปรแกรมด้วยไลบรารี MyLib ที่ใช้ก่อนหน้านี้มาหลายโปรแกรมแล้ว โดยในครั้งนี้จะใช้อัลกอริทึมหลายๆตัวมาคำนวณเพื่อเปรียบเทียบกันดู เมื่อคำนวณแล้วมีรูปกราฟฟิคหยาบๆให้ดูพอกล้อมแกล้ม

การคำนวณเล็งสกัดย้อน หรือ Resection Problem มีมานานแล้วหลักๆแล้ววิธีการคำนวณแบ่งเป็น 2 วิธีหลักๆคือ แบบการตรีโกณมิติ (Trigonometric Solution) และวิธีการแบบเรขาคณิตวงกลมตัดกัน (Geometric Circle Intersection) วิธีการนี้นอกจากนำมาใช้ในงานสำรวจแล้ว ในแวดวงหุ่นยนต์ที่ใช้ในสถานที่ในร่ม ผู้อ่านอาจจะคุ้นกับการแข่งขันหุ่นยนต์ของน้องๆนักศึกษา การหาตำแหน่งในร่มของหุ่นยนต์จะอาศัยวิธีการนี้ จะอาศัยตั้งสถานีฐานที่รู้ค่าพิกัด 3 สถานี (Beacon) แล้วหุ่นยนต์จะมีอุปกรณ์จำพวก Goniometer ที่คอยหมุนกวาดหามุม 3 มุม จากตำแหน่งที่หุ่นยนต์ตั้งอยู่กับสถานีฐานนั้น จากนั้นจะคำนวณหาพิกัดตัวเองแบบ realtime

ดังนั้นการคำนวณแบบเล็งสกัดย้อนก็ยังมีคนคิดค้นอัลกอริทีมที่เร็วที่สุดเพื่อช่วยในการคำนวณให้ออกผลลัพธ์มาเร็วที่สุด ลองไปดูอัลกอริทึม Total ที่เคลมว่าเร็วที่สุด แต่สำหรับเราแล้วในแวดวงสำรวจ ความเร็วในการคำนวณไม่ใช่ประเด็นใหญ่

รายชื่อโปรแกรมเล็งสกัดย้อน

1.Kaestner-Burkhardt Method ใช้ตรีโกณมิติมาช่วยในด้านการคำนวณ วิธีการคำนวณนี้คิดค้นกันมานมนานแล้วและวิธีการคำนวณจะตั้งชื่อตามผู้ที่คิดค้น วิธีการนี้ได้มีคนนำมาปรับปรุงกันหลายครั้ง

2.TienStra Method ใช้วิธีการด้านตรีโกณมิติมาช่วยในการคำนวณ

 

3.Collins Method ใช้วิธีการด้านตรีโกณมิติมาช่วยในการคำนวณ

4.Cassini Method ใช้วิธีการด้านตรีโกณมิติมาช่วยในการคำนวณ

5.Font-Llagunes ใช้วิธีเรขาคณิตโดยใช้วงกลมมาตัดกันมาช่วยในการคำนวณ

ผมประยุกต์โดยการนำสูตรมาแปลงเป็นโค้ดภาษาซี  โดยได้นำวิธีการคำนวณทั้งหมด 5 วิธี แต่คงไม่สามารถอธิบายวิธีการคำนวณได้หมด

ดาวน์โหลดโปรแกรม (Download)

ไปที่หน้าดาวน์โหลด (Download) หรือไปที่โปรแกรม Resectionจะได้ไฟล์ชื่อ “RESCTNEX.G1A” จากนั้นทำการก็อปปี้ไฟล์เข้าเครื่องคิดเลขผ่านโปรแกรม Casio FA-124 หรือ copy ผ่าน SD Card ก็สะดวกเหมือนกัน

เริ่มใช้งานโปรแกรม

ที่เครื่องคิดเลขกดปุ่ม “MENU” จะเห็นลิสต์ของไอคอนของโปรแกรมต่างๆ ตัวโปรแกรม Resection อยู่ด้านล่างๆใช้ปุ่มลูกศร เลื่อนลงมาแล้วกดคีย์ “EXE

เมนูหลัก  (Main Menu)

ก่อนจะไปต่อวิธีการใช้งานมาดูเมนูหลักของโปรแกรม เนื่องจากเป็นคำย่อต้องทำความเข้าใจกันเสียก่อน

Met – Method (F1) เลือกวิธีการคำนวณที่ผมกล่าวมาข้างต้นจำนวน 5 วิธี

Coor – Coordinates (F2) ป้อนค่าพิกัดของเป้าหลัง (control point) จุดที่ทราบค่าพิกัด 3 จุด (A, B และ C ตามลำดับ)

Ang – Angle (F3) ป้อนค่ามุมสองมุม (α และ β ตามลำดับ)

Calc – Calculate (F4) คำนวณเล็งสกัดย้อนหาค่าพิกัดจุดตั้งกล้อง

Info – Information (F5) แสดงเครดิตไลบรารีที่ใช้งาน

Exit – Exit (F6) ออกจากโปรแกรมนี้

เลือกวิธีการคำนวณ (Method)

ที่เมนูหลักของโปรแกรมกดคีย์ F1 – Met เลือกวิธีการคำนวณ จะเห็นหน้าจอแสดง Resection Method

กดคีย์ “EXE” จะเห็น drop down list ลงมาให้เลือกดังรูปด้านล่าง ในที่นี้ลองเลือก “TienStra

กด F6 – OK เพื่อออก

ตัวอย่างที่ 1 กำหนดค่าพิกัดจุด A (1000E, 2000N) ค่าพิกัดจุด  B (1078.331E, 2077.869N) และค่าพิกัดจุด C (1172.191E, 2154.753N) วัดมุม α = 40°8’24” และมุม β = 57°36’0″ หาค่าพิกัดจุด P

ป้อนค่าพิกัดหมุดหลักฐาน (Input Control Points Coordinates)

ที่เมนูหลักกดคีย์ F2-Coor เพื่อป้อนค่าพิกัดหมุดหลักฐานที่ทราบค่าพิกัด 3 จุด ดังนี้

 

กดคีย์ F6 – OK เพื่อออก

ป้อนค่ามุม (Input Angles)

ที่เมนูหลักกดคีย์ F3 – Ang เพื่อป้อนมุม 2 มุมดังนี้ สำหรับการป้อนมุมให้ใช้เครื่องหมายลบ (-) คั่น

กดคีย์ F6 – OK เพื่อออก

คำนวณหาค่าพิกัด (Calculate Resection)

ที่เมนูหลักกดคีย์ F4 – Calc เพื่อคำนวณเล็งสกัดย้อน จะได้ผลลัพธ์ดังรูปด้านล่าง กดคีย์ F1 – PgUp หรือ F2 – PgDn เพื่อเลื่อนดูผลลัพธ์ โปรแกรมจะแสดงค่าพิกัดหมุดหลักฐาน 3 จุด พร้อมทั้งมุมที่ป้อนไปเพื่อทบทวนว่าผู้ใช้ป้อนเข้าไปถูกต้องตามที่ต้องการหรือไม่ และสุดท้ายก็แสดงค่าพิกัดจุดเล็งสกัดย้อน (Resection) ที่เราต้องการคือ (1167.446E, 2016.916N)

แสดงแผนผัง (Plot)

ต้องการดูแผนผังการจัดวางตัวของจุดหลักฐาน 3 จุดและผลลัพธ์ก็สามารถดูได้คร่าวๆ กดคีย์ F5 – Plot 

สามารถกดคีย์ F1 – Dn (Down) เพื่อเลื่อนภาพลง) F2 – Up (เลื่อนภาพขึ้น) F3 – Lt (Left เลื่อนภาพไปด้านซ้าย) F4 – Rt (เลื่อนภาพไปด้านขวา) หรือกด F5 – M-> (เลือกเมนูด้านขวา) เมนูด้านขว่าจะมี F1 -Z+ (เพื่อขยายภาพ) F2 – Z- (เพื่อย่อภาพ) เสร็จแล้วกดคีย์ F6 -Done เพื่อออก กดคีย์ F6 – Done อีกครั้งเพื่อออกมาเมนูหลัก

คำนวณด้วยวิธีการอื่น

การคำนวณด้วยวิธี Tienstra ได้นำเสนอไปแล้วลองมาใช้วิธีการอื่นมาลองคำนวณบ้าง ถ้าผู้ใช้ออกจากโปรแกรมด้วยการกดคีย์ F6 – Exit โปรแกรมจะทำการเก็บค่าต่างๆที่ป้อนไปทังหมดไว้ เมื่อเข้ามาใช้โปรแกรมอีกรอบ ถ้าต้องการใช้ค่าเดิมจะไม่ต้องป้อนใหม่อีกครั้ง

Kaestner-Burkhardt Method

ที่เมนูหลักกดคีย์ F1 -Met เพื่อเลือกวิธีการคำนวณ ในที่นี้เลือก Kaestner กดคีย์ F6 – OK เพื่อออก

ที่เมนูหลักกดคีย์ F3 – Calc เพื่อทำการคำนวณ (ไม่ต้องป้อนค่าพิกัดและค่ามุมใหม่) จะได้ผลลัพธ์มาดังนี้ กดคีย์ F1 – PgUp หรือ F2 – PgDn เพื่อเลื่อนดูผลลัพธ์

สังเกตว่าค่าพิกัดที่ได้ (1168.228E, 2014.113N) มีความต่างจากวิธี Tienstra (1167.446E, 2016.916N)ไปพอสมควร ผมไม่แน่ใจเมื่อตรวจสอบโค้ดที่แปลงจากสูตรก็ยังคิดว่าไม่มีที่ผิด ลองไปเทียบดูจากวิธีอื่นอีกที

 

Cassini Method

ที่เมนูหลักกดคีย์ F1 – Met เพื่อเลือกวิธีการคำนวณ เลือก “Cassini” กดคีย์ F6 – OK  เพื่อออก

ที่เมนูหลักกดคีย์ F3 – Calc เพื่อทำการคำนวณ (ไม่ต้องป้อนค่าพิกัดและค่ามุมใหม่) จะได้ผลลัพธ์มาดังนี้ กดคีย์ F1 – PgUp หรือ F2 – PgDn เพื่อเลื่อนดูผลลัพธ์

 

จะได้ค่าพิกัดผลลัพธ์ออกมาจากวิธีการของ Cassini (1167.446E, 2016.916N) ซึ่งเท่ากับวิธีการของ Tienstra

Collins Method

ที่เมนูหลักกดคีย์ F1 – Met เพื่อเลือกวิธีการคำนวณ เลือก “Collins” กดคีย์ F6 – OK  เพื่อออก

ที่เมนูหลักกดคีย์ F3 – Calc เพื่อทำการคำนวณ จะได้ผลลัพธ์มาดังนี้

จะได้ค่าพิกัดผลลัพธ์ออกมาจากวิธีการของ Collins (1167.446E, 2016.916N) ซึ่งเท่ากับวิธีการของ Tienstra, Cassini

 

 

Font-Llagunes

เป็นวิธีการที่ผมชอบมากที่สุดและเคยเขียนลงแบบละเอียดในตอนก่อนหน้านี้ การใช้งานทำได้ตามขั้นตอนดังต่อไปนี้ ที่เมนูหลักกดคีย์ F1 – Met เพื่อเลือกวิธีการคำนวณ เลือก “Font-Llagunes” กดคีย์ F6 –  OK เพื่อออก

กดคีย์ F3 – Calc เพื่อทำการคำนวณ จะได้ผลลัพธ์มาดังนี้ กดคีย์ F1 – PgUp หรือ F2 – PgDn เพื่อเลื่อนดูผลลัพธ์

เช่นเดียวกันจะได้ค่าพิกัดผลลัพธ์ออกมาจากวิธีการของ Font-Llagunes (1167.446E, 2016.916N) ซึ่งเท่ากับวิธีการของ Tienstra, Cassini และ  Collins แต่บางครั้งจะต่างกับวีธีการของ Kaestner-Burkhardt ในระดับหลักเมตร

 

 

ตัวอย่างที่ 2 กำหนดค่าพิกัดจุด A (1000E, 5300N) ค่าพิกัดจุด  B (2200E, 6300N) และค่าพิกัดจุด C (3100E, 5000N) วัดมุม α = 109°18’16.2″ และมุม β = 115°3’7.2″ หาค่าพิกัดจุด P

การคำนวณผมจะใช้การรวบรัดขอเสนอแต่วิธีการของ Font-Llagunes เท่านั้น ที่เมนูหลักกดคีย์ F1 – Met เพื่อเลือกวิธีการคำนวณ เลือก Font-Llangunes จาก drop down list กดคีย์ F6 – OK เพื่อออก

ที่เมนูหลักกดคีย์ F2- Coor เพื่อป้อนค่าพิกัด เสร็จแล้วกดคีย์ F6 – OK

ที่เมนูหลักกดคีย์ F3 – Ang เพื่อป้อนมุม เสร็จแล้วกดคีย์ F6 – OK

ที่เมนูหลักกดคีย์ F4 – Calc เพื่อทำคำนวณ กดคีย์ F1 – PgUp หรือ F2 – PgDn เพื่อเลื่อนดูผลลัพธ์

จะได้ค่าพิกัดจุดเล็งสกัดย้อนมาเท่ากับ (2128.989E, 5575.375N) กดคีย์ F5 – Plot เพื่อดูแผนผัง

ก็ได้รูปการวางตัวของจุดหลักฐาน 3 จุดและจุดที่ต้องการทราบค่าคือจุด P น่าเสียดายที่ผมไม่สามารถวาดมุมแสดง dimension เพราะข้อจำกัดของเครื่องคิดเลข และต้องเตือนกันอีกนิดว่าจุด 4 จุดนี้ต้องไม่อยู่บนวงกลมเดียวกัน (โอกาสเกิดน้อยมากๆครับ) ไม่ว่าสูตรไหนก็ไม่สามารถคำนวณได้ เรียกภาวะอย่างนี้ว่าเกิดเหตุการณ์สภาวะเอกฐาน Singularity

 

สำหรับโปรแกรมในชุดเครื่องคิดเลข Casio fx-9860G II SD คงจะมีอีกหลายตอนครับ สำหรับเครดิตของโปรแกรมในชุดนี้ก็กดคีย์ F5 – Info จากเมนูหลัก ก็ติดตามกันตอนต่อไปครับ 

 

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 9 โปรแกรมคำนวณหาจุดตัด (Intersection)

งานในด้านสำรวจเป็นงานที่ต้องเกี่ยวข้องกับ Geometry บน plane เป็นส่วนใหญ่ ในบางครั้งอาจจะมีโจทย์ที่ต้องคำนวณหา จุดตัดระหว่างเส้นตรงสองเส้น หรือเส้นตรงกับวงกลม หรือวงกลมกับวงกลม โดยที่เส้นตรงอาจจะทราบค่าพิกัดหัวและท้าย หรือทราบค่าพิกัดเพียงหนึ่งจุดและค่าอะซิมัท ส่วนวงกลมนั้นจะต้องทราบค่าพิกัดจุดศูนย์กลางและรัศมี สูตรการคำนวณไม่ได้ยาก สมัยนี้โจทย์พวกนี้เราใช้โปรแกรมด้าน CAD เขียนแบบช่วยเสียเป็นส่วนใหญ่ อย่างที่ผมเคยบอกออกไปครับ ถ้าช่างสำรวจเรามีโอกาสได้ใช้สมองคิดด้าน geometry บ้างและสามารถใช้เครื่องคิดเลขเป็นตัวช่วย ก็จะสามารถพัฒนาทักษะด้านนี้พอสมควร

โปรแกรมคำนวณหาจุดตัด (Intersection)

โปรแกรมเขียนไว้นานแล้ว แต่มีโอกาสมาปรับแก้ใหม่ให้สามารถคำนวณจุดสัมผัส เช่นเส้นตรงกับวงกลมโดยสามารถตั้ง Tolerance ได้ ผมตั้งไว้ที่ 1 มม. ขอขยายความว่าเราสามารถหาจุดตัดเส้นตรงกับวงกลมได้เป๊ะๆ สองจุด แต่ในกรณีที่เป็นจุดสัมผัส (Tangent) นั้นยากโอกาสน้อยมากที่จะคำนวณหาจุดสัมผัสจากโจทย์ที่กำหนดเส้นตรงที่ผ่านจุดและมีทิศทางตามอะซิมัท มาสัมผัสกับวงกลมที่กำหนดจุดศูนย์กลางและรัศมี  ผมจึงตั้ง tolerance ไว้ 1 มม. ถ้าเส้นตรงมาเฉียดจุดสัมผัสนี้ไม่ว่าจะด้านนอกหรือด้านในวงกลมถ้าระยะห่างเส้นตรงห่างจากจุดสัมผัสจริงน้อยกว่า 1 มม. ก็ให้ถือว่าเส้นตรงเส้นนี้สัมผัสกับวงกลม สำหรับไอคอนโปรแกรมเมื่อติดตั้งแล้ว ดังรูปด้านล่าง

ดาวน์โหลดและติตตั้งบนเครื่องคิดเลข

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม Intersection จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “INSCTEX.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มต้นใช้งานโปรแกรมหาจุดตัด (Intersection)

กดคีย์ “Main Menu” ของเครื่องคิดเลขใช้คีย์ลูกศรไล่ไปหาไอคอนโปรแกรม Intersection ดังรูป แล้วกดคีย์ “EXE”

เมนูหลักของโปรแกรม

จะเห็นหน้าตาโปรแกรม เหมือนทุกๆโปรแกรมจะมีชื่อโปรแกรม รุ่น พร้อมทั้งบอกลิขสิทธิ์ย่อๆว่าสามารถใช้งานได้ฟรี หรือสำเนาจ่ายแจกให้คนอื่นได้ ซึ่งจะมีเมนูหลักดังนี้

F1 – Set สำหรับเลือกการคำนวณว่าจะเป็นเส้นตรงตัดกับเส้นตรง เส้นตรงกับวงกลม หรือวงกลมกับวงกลม

F2 – IN (Input) จะเป็นการป้อนค่าพิกัดหรืออะซิมัท ตามตัวเลือกที่เลือกไว้ในเมนูแรก (F1 – Set)

F3 – Calc คำนวณหาจุดตัด ซึ่งในเมนูย่อยสามารถแสดงรูปเส้นตรง (Plot) วงกลมพร้อมจุดตัดได้

F5 – Info แสดงเครดิตไลบรารี ที่โปรแกรมนำมาใช้งาน

F6-Exit ออกจากโปรแกรม

ตัวอย่างที่ 1 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Line and Line Intersection)

เป็นการคำนวณหาจุดตัดเมื่อกำหนดเส้นตรงสองเส้นที่มีค่าพิกัดหัวและท้าย ดังรูปด้านล่างเป็นแปลงที่ดิน DEFG ต้องการหาค่าพิกัดจุด “X” ซึ่งเป็นพิกัดศุนย์กลางพื้นที่ที่เกิดจากเส้นตรงจากมุมของแปลงที่ดินลากเป็นเส้นทแยงมุมตัดกัน

เลือกรายการคำนวณ

ที่เมนูหลักของเครื่องคิดเลขกดคีย์ F1-Set จะเห็นตัวเลือกรูปแบบการคำนวณจุดตัด (Intersection Type) เมื่อกดคีย์ “EXE” จะเห็นรายการให้เลือก 4 อย่าง ให้เลือก “Line X Line” ดังรูป กดคีย์ “EXE” จากนั้นกดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F2-IN ป้อนค่าพิกัดของเส้นตรงสองเส้น ตามโจทย์ข้างต้น กดคีย์ F6 – OK เพื่อออก

คำนวณหาจุดตัด

กลับมาที่เมนูหลักของโปรแกรม จากนั้นกดคีย์ F3 – Calc เพื่อคำนวณหาจุดตัด “X” โปรแกรมจะทวนค่าพิกัดของเส้นตรงเส้นที่ป้อนไว้ก่อนจะแสดงค่าพิกัดจุดตัด ถ้าจุดนี้อยู่บนเส้นตรงทั้ง 2 เส้น กดคีย์ F2 – PgDn เพื่อเลื่อนไปหน้าต่อไป

หน้าสุดท้ายจะเห็นค่าพิกัดจุดตัด “X” N = 1652.560, E = 1739.142

แสดงรูปตัด (Plot)

กดคีย์ F5-Plot เพื่อแสดงเส้นตรงสองเส้นและจุดตัด จอภาพเป็น dot pixel หยาบๆก็ได้ขนาดนี้พอให้เกิดจินตนาการว่าเส้นตรง 2 เส้นวางตัวในลักษณะใดและตัดกันที่ตรงไหน กดคีย์ F6-Done เพื่อออก

ตัวอย่างที่ 2 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Azimuth and Azimuth Intersection)

การกำหนดเส้นตรงโดยกำหนดจุดและอะซิมัทให้ ในกรณีนี้เส้นตรงจะยาวไม่สิ้นสุด ดังนั้นถ้าเส้นตรงที่กำหนดไม่ขนานกัน ก็มั่นใจได้เลยว่าหาจุดตัดได้แน่ (ต่างจากตัวอย่างแรกที่หาจุดตัดบนเส้นตรงทั้งสองเท่านั้น)

กำหนดเส้นตรงที่เป็น Alignment ของงานถนน เส้นที่ 1 เป็น  ผ่านจุด N: 2641990.928 , E = 231848.514  Azimuth: 35°28′ 1.7433″ เส้นที่ 2 ผ่านจุด N: 2641812.446 E: 231753.041 Azimuth: 9°12′ 20.4212″ คำนวณหาจุดตัด PI (Point of Intersection)

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Azi” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัด ไม่ลืมว่าป้อนอะซิมัทคั่นด้วยเครื่องหมายลบ  เมื่อเสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณหาจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรม กดคีย์ F3-Calc เพื่อคำนวณหาจุดตัด โปรแกรมจะทวนค่าพิกัดที่ป้อนเข้าไปก่อน กดคีย์ F2-PgDn เพื่อเลื่อนไปหน้าแสดงผลถัดไป

จะได้ค่าพิกัดจุดตัดที่เป็นจุด PI (Point of Intersection N: 2641870.013, E: 231762.371 กดคีย์ F5-Plot จะเห็นรูปร่างเส้นตรงสองเส้น พร้อมจุดตัด “I1” บนหน้าจอภาพกดคีย์ F6-Done สองครั้งเพื่ออก

ตัวอย่างที่ 3 คำนวณหาจุดตัดระหว่างเส้นตรงกับวงกลม (Azimuth and Circle Intersection)

อย่างที่ผมเกริ่นไปข้างต้นว่าเส้นตรงถ้าตัดผ่าเข้าไปในวงกลมจะได้จุดตัดสองเส้น แต่กรณีพิเศษที่เส้นตรงไปสัมผัสกับวงกลมกรณีนี้จะได้จุดตัดคือจุดสัมผัสมาจุดเดียว มาลองดูตัวอย่างแบบนี้ กำหนดให้เส้นตรงผ่านจุด N: 2642178.562, E: 231597.085 Azimuth: 161°8′ 58.2981″ กำหนดวงกลมมีจุดศูนย์กลาง N: 2641772.451, E: 231999.821  รัศมี 249.921 เมตร

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Cir” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัดและรัศมีวงกลม

ที่เมนูหลักของโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัดของเส้นตรงและป้อนค่าอะซิมัท ป้อนค่าพิกัดศูนย์กลางวงกลมพร้อมทั้งรัศมี เสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรมกดคีย์ F3-Calc เพื่อคำนวณจะได้ผลลัพธ์แสดงผลมาดังรูปด้านล่าง

สังเกตว่าตรงจุดตัดโปรแกรมจะแสดงว่าได้จุดสัมผัส Tangent มา 1 จุดคือ N: 2641691.702, E: 231763.305 กดคีย์ F5-Plot เพื่อแสดงรูปเส้นตรงและวงกลม ก็พอกล้อมแกล้มการวาดรูปร่างวงกลม ไม่มีไลบรารีของเครื่องคิดเลขต้องอาศัยวาดจุดลงไปตามเส้นรอบวงแทน  จุดสัมผัสแสดงด้วยตัวอักษร “I1” จุดศูนย์กลางวงกลมแสดงด้วยตัวอักษร “C1”

ตัวอย่างที่ 4 คำนวณหาจุดตัดระหว่างวงกลมกับวงกลม (Circle and Circle Intersection)

มาถึงตัวอย่างสุดท้าย ผมจะขอรวบรัดแสดงเฉพาะรูปหน้าจอ กำหนดโจทย์ วงกลมวงแรกมีค่าพิกัดศูนย์กลาง N: 2641210.885, E: 232480.916 รัศมี 525 เมตร วงกลมวงที่ 2 N: 2641256.635 E: 233130.568 รัศมี 250 เมตร คำนวณหาจุดตัดระหว่างวงกลมสองวงนี้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณหาจุดตัดนี้ไฟล์ที่จัดเก็บข้อมุลคือ “INTSCT.CFG

ก็ยังมีหลายซีรี่ย์สำหรับโปรแกรมเครื่องคิดเลขในชุดนี้ ก็ติดตามกันได้ต่อไปครับ

Update: โปรแกรมแปลงค่าพิกัดภูมิศาสตร์ Geographic Calculator (GeoCalc) บนเครื่องคิดเลข Casio fx-9860G II SD

Geographic Calculator

สืบเนื่องจากตอนก่อนหน้านี้ผมได้นำเสนอโปรแกรมแปลงพิกัด Geographic Calculator แบบไม่ได้ใช้ไลบรารีช่วยเรื่อง User Interface โปรแกรมมีลักษณะง่ายๆ เปิดมาเจอเมนูเลือกลักษณะที่จะคำนวณ จากนั้นโปรแกรมจะถามค่าพิกัดที่ต้องการแปลงแล้วคำนวณให้ ข้อดีคือใช้ง่าย ข้อเสียถ้าป้อนข้อมูลผิดพลาด จะย้อนกลับไม่ได้ ต้องเดินหน้าผิดไปจนจบ แล้วค่อยย้อนกลับมาอีกที

เปลี่ยนรูปแบบการติดต่อกับผู้ใช้ด้วยไลบรารี MyLib

ไลบรารี MyLib เป็นไลบรารีภาษาซีเล็กๆที่ผู้พัฒนาใช้นาม hayzel ได้เขียนไว้เพื่อใช้บนเครื่องคิดเลข Casio fx-9860G II SD ผมนำมาใช้และชอบ ทำให้มีแรงใจที่จะเขียนโปรแกรมบนเครื่องคิดเลขรุ่นเทพรุ่นนี้ได้มาหลายโปรแกรม และก็เหมือนเดิมครับว่าโปรแกรมที่ผมเขียนนั้นใช้งานได้ฟรี (Freely Usability) เพื่อใช้ในแวดวงงานสำรวจทำแผนที่ตลอดจนงานสำรวจเพื่อการก่อสร้างก็ตาม

ก็ขอตั้งชื่อโปรแกรมเล็กๆสำหรับแปลงพิกัดบนพื้นหลักฐาน WGS84 นี้ว่า “GeoCalc Extra” ก่อนอื่นสูตรที่ใช้ในการคำนวณผมใช้ไลบรารีชื่อ mgrs สามารถคำนวณแปลงพิกัดในระบบพิกัด UTM, geographic, UPS และ MGRS ได้ ขนาดไม่ใหญ่มากนัก สามารถคอมไพล์และบิวท์มาใส่เครื่องคิดเลขรุ่นนี้ได้ ทั้ง MyLib และ mgrs เป็นโปรแกรมเปิดโค้ด ฟรีทั้งคู่

ดาวน์โหลดโปรแกรม (Download)

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม GeoCalc Extra จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “GEOCALC.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มใช้โปรแกรม

ที่ “Main Menu” ของเครื่องคิดเลขเลื่อนไปหาไอคอนของโปรแกรมดังรูปด้านล่าง เมื่อกดคีย์ “EXE” แล้วจะเข้าเมนูของโปรแกรม ดังนี้

F1 – Set เลือกรายการคำนวณแปลงพิกัดระหว่าง UTM, Geographic หรือ MGRS

F2 – Src (Source) ป้อนค่าพิกัดที่ต้องการแปลงพิกัด

F3 – Calc คำนวณแปลงพิกัดพร้อมแสดงผลลัพธ์

F5 – Info แสดงเครดิตไลบรารีที่โปรแกรมใช้งาน

F6 – Exit ออกจากโปรแกรม

เลือกรายการคำนวณ (Menu)

ที่เมนูหลักกดคีย์ F1 – Set เพื่อเข้าไปเลือกรายการคำนวณ จะเห็น ระบบพิกัดเริ่มต้น (Source)   และระบบพิกัดปลายทาง (Target) ส่วนด้านล่าง MGRS Precision จะเป็นความละเอียดของระบบพิกัด MGRS (Military Grid Reference System) เลือกได้ 6 ระดับคือ 0, 2, 4, 6, 8, 10

ตัวอย่างที่ 1 แปลงค่าพิกัดจากค่าพิกัดภูมิศาสตร์ไปยังค่าพิกัดยูทีเอ็ม (Geographic to UTM)

ตั้งค่าระบบพิกัดเริ่มต้นและปลายทาง

ตั้งค่าระบบพิกัดต้นทางและปลายทางดังรูป จากนั้นกดคีย์ F6 – OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรมอีกครั้ง กดคีย์ F2 – Src เพื่อป้อนค่าพิกัดภูมิศาสตร์

ป้อนค่าพิกัดละติจูด Latitude 39°57’9.34803″N โดยการป้อน 39-57-9.34803N ค่าลองจิจูด 75°9’54.75490″W ป้อนค่า 75-9-54.75490W เสร็จแล้วกดคีย์ F6 – OK เพื่อออกไปคำนวณ

คำนวณแปลงพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F3 – Calc เพื่อคำนวณจะได้ผลลัพธ์ดังรูปด้านล่าง โปรแกรม

จะแสดงค่าพิกัดเริ่มต้นให้และค่าพิกัดปลายทางคือยูทีเอ็มให้ พร้อมทั้งบอกโซนของยูทีเอ็มให้ กดคีย์ F6 – Done เพื่อออก

ตัวอย่างที่ 2 แปลงค่าพิกัดจากค่าพิกัดยูทีเอ็มไปยังค่าพิกัด MGRS (UTM to MGRS)

กำหนดค่าพิกัดยูทีเอ็ม (UTM) ดังนี้ N: 2642783.110, E: 232030.949 UTM Zone No: 46N กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F1 – Set เพื่อเปลี่ยนรายการคำนวณ ตั้งค่าตามรูปด้านล่าง 

เสร็จแล้วกดคีย์ F6 – OK เพื่อออก

กลับมาเมนูหลักของโปรแกรมกดีย์ F2 – Src เพื่อออกป้อนค่าพิกัดยูทีเอ็มดังนี้ จากนั้นกดคีย์ F6 – OK เพื่อออก

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F3 – Calc เพื่อคำนวณ จะได้ผลลัพธ์ดังรูปด้านล่าง

ตัวอย่างที่ 3 แปลงค่าพิกัดจากค่าพิกัด MGRS ไปยังค่าพิกัดภูมิศาสตร์ (MGRS to Geographic)

กำหนดค่าพิกัด MGRS: 46QCK0907425049 ส่วนขั้นตอนจะขอรวบรัดแสดงด้วยรูปภาพ

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณโค้งแปลงพิกัดภูมิศาสตร์นี้ไฟล์ที่จัดเก็บข้อมุลคือ “GEOCALC.CFG

ก็ตามที่สัญญาไว้ว่าจะไล่รื้อโปรแกรมเก่าๆ ที่ลงมาหลายๆตอนหน้านี้ด้วยระบบติดต่อผู้ใช้ตามไลบรารี mylib ที่ผมใช้อยู่ ติดตามกันตอนต่อไปครับ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 7 โปรแกรมคำนวณโค้งราบ (Horizontal Curve)

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 7 โปรแกรมคำนวณโค้งราบ (Horizontal Curve)

โปรแกรมคำนวณโค้งราบ HCurve สำหรับเครื่องคิดเลข Casio fx-9860 G

ช่วงนี้อยู่ในชุดซีรี่ย์โปรแกรมเครื่องคิดเลข Casio fx-9860G ที่ใช้ไลบรารี MyLib ต่อไปขอนำเสนอโปรแกรมคำนวณโค้งราบ (Simple Horizontal Curve) ตัวโปรแกรมพัฒนาด้วยภาษาซี  ใช้เป็นโปรแกรม AddIn ดังรูปด้านล่าง

โปรแกรม HCurve คำนวณโค้งราบ (Simple Horizontal Curve)

องค์ประกอบของโค้งราบ (Elements of Horizontal Curve)

องค์ประกอบของโค้งราบ (Elements of Curve)

คำนิยาม (Abbrivations)

R – Radius คือรัศมีของโค้งราบ รัศมีจะตั้งฉากกับเส้นสัมผัสวงกลมเสมอ

PC –  Point of Curvature คือจุดเริ่มต้นโค้ง บางครั้งเรียกว่า BC (beginning of curve) หรือ TC (tangent to curve)

PI – Point of Intersection คือจุดตัดของ tangent 2 เส้น

PT – Point of Tangency คือจุดสิ้นสุดโค้ง บางครั้งเรียกว่า EC (end of curve) หรือ CT (curve to tangent)

POC – Point of Curve คือจุดบนโค้งในตำแหน่งใดก็ตาม

L – Length of Curve คือความยาวโค้งวัดตามโค้งจากจุด PC ไปจุด PT

T – Tangent Distance หรือ Tangent Length คือเส้นตรงที่สัมผัสโค้งวัดจากจุด PC ไปจุด PI หรือวัดจาก จุด PI ไปจุด PT

คุณสมบัติของโปรแกรม

โค้งราบ (Simple Horizontal Curve) ในงานสำรวจใช้ในงานสำรวจเพื่อการก่อสร้าง (Construction Survey) โดยที่ให้ตำแหน่ง (Setting out) งานก่อสร้างถนน ทางรถไฟ ผู้ใข้ป้อนข้อมูลองค์ประกอบของโค้งราบที่โปรแกรมต้องการจนครบ โปรแกรมสามารถคำนวณองค์ประกอบโค้งที่เหลือและสามารถคำนวณค่าพิกัดบนเส้น Center line หรือกระทั่งสามารถ offset ไปด้านซ้ายหรือด้านขวาก็ได้เช่นเดียวกัน สามารถคำนวณค่าพิกัดแบบทุกช่วงระยะ (interval) ให้ค่าพิกัดออกมาเป็นบัญชีรายการได้ โปรแกรมนี้ออกแบบและพัฒนามาเพื่อช่วยช่างสำรวจให้สามารถนำโปรแกรมไปตรวจสอบข้อมูลโค้งราบได้ด้วยตัวเอง

ในปัจจุบันการวางโค้งในสนาม ไม่ได้ถูกจำกัดเช่นสมัยแต่ก่อนเนื่องจากเครื่องมือเช่นอุปกรณ์กล้องสำรวจ Total Station ทันสมัยสามารถให้ตำแหน่งจากค่าพิกัดได้เลย ไม่เหมือนสมัยแต่ก่อนที่มีแต่กล้อง Theodolite และเทปวัดระยะ ที่การวางโค้งต้องอาศัยการตั้งกล้องที่จุด PC หรือ PI หรือแม้กระทั่ง PT แล้วทำการเปิดมุมและดึงเทปไปตามคอร์ด ปัจจุบันไม่ต้องทำอย่างนั้นแล้ว สามารถตั้งกล้องที่ไหนก็ได้ที่สะดวก

ก็เนื่องจากความทันสมัยของกล้อง Total Station นี้เอง ในอนาคตไม่ไกลการโอนข้อมูลจากกล้องไปที่ออฟฟิศหรือจากออฟฟิศไปที่กล้องจะเป็นเรื่องธรรมดามากผ่านทางออนไลน์ ซึ่งเรื่องนี้ข้อดีก็มีมากมาย แต่ข้อเสียที่เกิดขึ้นคือช่างสำรวจจะมีเวลาใช้สมองคิดเรื่อง geometry น้อยลงเพราะโปรแกรมบนกล้องทำให้หมด ทำให้ขาดการฝึกฝนทักษะในด้านนี้ ซึ่งผมคิดว่าอาจจะทำให้คุณภาพของบุคลากรด้านสำรวจของเราด้อยลงในอนาคต ดังนั้นการใช้เครื่องคิดเลขมาช่วยอาจจะช่วยฝึกฝนทักษะได้บ้างในจุดนี้

ดาวน์โหลดโปรแกรม (Download)

ไปที่หน้าดาวน์โหลด มองหาโปรแกรมคำนวณโค้งราบ HCurve  จะได้ไฟล์ชื่อ “HCURVEEX.G1A” เมื่อดาวน์โหลดมาแล้วโอนเข้าเครื่องคิดเลขผ่านทางโปรแกรม FA-124 หรือ SD Card

ใช้งานฟรี (Freely Usable)

ก็ยังเหมือนเดิมไม่ว่าจะโปรแกรมบนเครื่องคอมพิวเตอร์หรือบนเครื่องคิดเลข คือให้ใช้งานได้ฟรี

เริ่มต้นใช้งาน

ที่เครื่องคิดเลขกดคีย์ “Menu” เพื่อเข้าสู่หน้า AddIn หรือ  Main Menu ของเครื่องคิดเลข เลื่อนลูกศรลงไปด้านล่างๆจะเห็นไอคอนของโปรแกรมดังรูปด้านล่าง กดคีย์ “EXE” เพื่อเข้าสู่โปรแกรม

จะเห็นหน้าเมนูหลักของโปรแกรมดังนี้

ก็เหมือนโปรแกรมคำนวณโค้งดิ่ง (VCurve) ที่ผ่านมาคือมีเมนูย่อยเรียงจากซ้ายไปขวา สัมพันธ์กับการกดคีย์ F1-F6 เรียงกันไป

เมนูหลัก (Main Menu)

F1 (Know) – Known สำหรับป้อนจุดที่ทราบค่า station และค่าพิกัด

F2 (Angl) – Angle สำหรับป้อนที่เกี่ยวกับมุมเช่น back tangent azimuth และมุมเบี่ยงเบน (Deflection Angle) ตลอดจนถึงทิศทางของโค้ง (Curve Direction)

F3 (Elem) – Elements สำหรับป้อนองค์ประกอบของโค้งเช่นรัศมีหรือความยาวโค้าง

F4 (Info) – Information สำหรับคำนวณหาข้อมูลพื้นฐานของโค้งทั้งหมด

F5 (Calc) – Calculate สำหรับคำนวณหาค่าพิกัดโค้งได้หลายรูปแบบเช่นกำหนดสถานี ระยะ offset ตลอดจนคำนวณจากช่วงระยะทาง (interval) ที่กำหนดให้

F6 (Exit) – Exit ออกจากโปรแกรม

ตัวอย่างการคำนวณโค้งราบ (Example)

มาดูวิธีการใช้งานจากตัวอย่างจะเข้าใจง่ายที่สุด

เลือกและป้อนสถานีที่ทราบและค่าพิกัด (Known Station and Know Coordinates)

ที่เมนูหลักกดคีย์ F1 (Know) แก้ไขค่าตามโจทย์ตัวอย่างที่ 1 ดังนี้

ในที่นี้สถานีและค่าพิกัดกำหนดที่จุด PI ทั้งคู่ เมื่อป้อนค่าเสร็จแล้วกดคีย์ F6 (OK) เพื่อออก

เลือกป้อนมุมอะซิมัทและมุมเบี่ยงเบน(Known Tangent and Deflection Angle)

ที่เมนูหลักกดคีย์ F2 (Angl) เพื่อเลือกอะซิมัทของเส้นสัมผัสที่ทราบค่าและมุมเบี่ยงเบน ตลอดจนป้อนทิศทางของโค้งราบว่าเลี้ยวซ้ายหรือเลี้ยวขวา จากตัวอย่างเลือกและป้อนค่าดังนี้

เสร็จแล้วกดคีย์ F6 (OK) เพื่อจัดเก็บค่าและออก

ป้อนองค์ประกอบโค้งราบ (Elements of Curve)

ที่เมนูหลักกดคีย์ F3 (Elem)  เลือกว่าจะป้อนค่ารัศมีโค้ง (Radius) หรือว่าความยาวโค้ง (Length of Curve) ในที่นี้เลือกรัศมีโค้งและป้อนค่า 201.950 เมตร

คำนวณหาข้อมูลพื้นฐานโค้งราบ (Curve Information)

ที่เมนูหลักกดคีย์ F4 (Info)

แสดงองค์ประกอบของโค้งและข้อมูลพื้นฐาน ค่าพิกัดของจุด PC, PI และ PT ตลอดจนจุดศูนย์กลางของโค้ง เนื่องจากจอภาพมีขนาดเล็กดังนั้นใช้การกดคีย์ F1 (PgUp) หรือ F2 (PaDn) เพื่อเลื่อนดูหน้าก่อนหน้านี้หรือหน้าถัดไป กดคีย์ F6 (Done) เพื่อออก

การคำนวณโค้งราบ (Horizontal Curve Calculation)

ที่เมนูหลักกดคีย์ F5 (Calc)จะเห็นเมนูย่อยอีกเมนูคือเมนูสำหรับคำนวณโค้งราบ

จะมีเมนูดังนี้

F1 (Sta) – Station คำนวณหาค่าพิกัดเมื่อกำหนดสถานี

F2 (INT) – Interval คำนวณหาค่าพิกัดสถานีเมื่อกำหนดช่วงระยะทาง (Interval) ให้

F4 (Info) – Information คำนวณข้อมูลพื้นฐานโค้งราบ โดยที่ผลลัพธ์เหมือนกับเมนู Info บนเมนูหลัก

F5 (Plot) – Plot Curve วาดรูปร่างโค้งราบ

F6 (Done) ออกจากเมนูคำนวณโค้งราบ

คำนวณหาค่าพิกัดเมื่อกำหนดสถานี (Calculate Coordinates of Station)

ที่เมนูคำนวณโค้งราบกดคีย์ F1 (Sta) จะมีไดอะล็อกให้ป้อนสถานี ตัวอย่างนี้ต้องการทราบค่าพิกัดของสถานี 17+200 โดยที่ offset ไปด้านซ้าย 8 เมตร ป้อนข้อมูลดังรูป ถ้าไม่ต้องการคำนวณหรือเก็บข้อมูลที่ป้อนก็กดคีย์ F5 (Canc) เพื่อ Cancel ออกไป หรือต้องการเก็บค่าแต่ไม่คำนวณก็กดคีย์ F6 (OK) ออกไป ถ้าต้องการคำนวณก็กดคีย์ F1 (Calc) จะได้ผลลัพธ์ดังรูปถัดไป กดคีย์ “EXE” เพื่อออก

คำนวณหาค่าพิกัดสถานีแบบกำหนดช่วงระยะทาง (Interval Calculation)

ที่เมนูคำนวณโค้งกดคีย์ F2 (INT) ในที่นี้ต้องการคำนวณทุกๆระยะ 25 เมตร โดยคำนวณในแนว Center Line (ไม่มีการ offset ไปซ้ายหรือขวา) กดคีย์ F1 (Calc) เพื่อคำนวณ

จะได้ผลลัพธ์ เริ่มตั้งแต่ PC (17+151.314), Sta 17+175, Sta 17+200, Sta 17+225, Sta 17+250, Sta 7+275, Sta 17+300 และสุดท้ายที่ PT (17+313.794) กด F1 (PgUp) เพื่อเลื่อนไปหน้าก่อนหน้านี้ และกด F2 (PgDn) เพื่อไปดูหน้าถัดไป กด F6 (Done)

 

วาดรูปโค้งราบ (Plot Curve)

จากเมนูคำนวณโค้งราบ กดคีย์ F5 (Plot) จะมีเมนูย่อยลงไปอีกสำหรับย่อ F1 (Z-) ขยาย F2 (Z+) ดึงรูปไปด้านซ้าย F3 (Lt) ดึงรูปไปด้านขวา F4 (Rt) กดคีย์ F5 (>) เพื่อไปเมนูย่อยอีกเมนูด้านขวา เมนูด้านขวาจะมีดึงรูปลง F1 (Dn) หรือดึงรูปขึ้น F2 (Up) กดคีย์ F6 (Exit) เพื่อออกจากเมนู

ก็อย่างว่าเครื่องคิดเลขรุ่นนี้เป็นจุดภาพ (pixel) บนจอภาพ ไม่ใช่จอภาพแบบโทรศัพท์มือถือในปัจจุบันที่มีความละเอียดสูง ข้อเสียคือแสดงภาพความละเอียดสูงไม่ได้ แต่ข้อดีไม่เปลืองแบตเตอรี สังเกตว่าแค่ถ่าน AAA สามก้อนใช้กันจนลืมครับ ดังนั้นก็ดูรูปโค้งพอให้เกิดจินตนาการว่าโค้งวางตัวในลักษณะไหน เวลาไปอยู่หน้างานจะได้วางภาพในใจได้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณโค้งราบนี้ไฟล์ที่จัดเก็บข้อมุลคือ “HCVEX.CFG

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่

การเล็งสกัดย้อน (Resection) และความเป็นมา

ในที่สุดก็มาถึงตอนที่ 5 ตอนที่ผมใช้เวลามากที่สุดในการ implement อัลกอริทึ่มที่ใช้คำนวณปัญหา Resection จาก 3 จุดที่กำหนด (Three Points Resection Problem) เป็นที่ทราบกันดีว่าการคำนวณ Resection นั้นนักคณิตศาสตร์ได้คิดค้นกันมาหลายร้อยปีแล้ว มีอัลกอริทึ่มรวมๆกันไม่น้อยกว่า 500 อัลกอริทึ่ม แต่บางอัลกอริทึ่มนั้นอายุเก่าแก่มากใช้การคำนวณหาด้วยการวาดลงบนกระดาษ ถ้าจะคัดออกมาจริงๆที่ใช้กันในปัจจุบันมีประมาณ 18 อัลกอริทึ่มหลักๆ และสามารถนำมา implement เป็นโปรแกรมในคอมพิวเตอร์ได้ ก่อนจะไปต่อกันลึกๆมาดูกันว่า Resection คืออะไร

การเล็งสกัดย้อน(Resection) คือการวัดพิกัดจุดตั้งกล้องจากสถานีที่ทราบค่าพิกัด 3 สถานี ตามตัวอย่างได้แก A, B และ C และวัดมุมราบคือมุม α และ β ตามลำดับ

ผมคนรุ่นเก่ายังทันเครื่องมือวัดมุม Sextant ผมทัน Sextant นี้ในช่วงทำงานใหม่ๆ โดยที่ลงเรือไปในทะเลกับพี่ๆช่างสำรวจของกรมเจ้าท่า ตอนนั้นเพิ่งเรียนจบมาใหม่ ยุคนั้น GPS/GNSS ยังไม่เป็นที่รู้จัก การวัดตำแหน่งของเรือสำรวจใช้เครื่องมือ Sextant ที่อาศัยหลักการของ Resection มาประยุกต์ใช้ บนเรือสำรวจจะมีเจ้าหน้าที่ 2 คน คนแรกจะส่องสถานี A และ B เพื่อวัดมุม α และคนที่สองจะส่องสถานี B และ C เพื่อวัดมุม β สองคนนี้ตามหลักการแล้วต้องขี่คอกันแต่จริงๆคงไม่มีใครทำเพียงแต่นั่งใกล้ๆกัน การใช้ Sextant วัดตำแหน่งเรือต้องอาศัยความชำนาญอย่างสูง เพราะเรือไม่อยู่นิ่งกับที่เพราะคลื่มลม จะปะทะให้เคลื่อนไหวตลอดเวลา

เมื่อการวัดมุมเสร็จสิ้นลงทั้งสองคนจะจดค่ามุม ∝ และ ∅ พร้อมๆกัน การใช้ Sextant ควบคู่ไปกับกับใช้เครื่องมือวัดความลึกของท้องน้ำจำพวก Echo sounder งาน post processing ในออฟฟิศได้แต่การนำค่ามุม α และ β มาคำนวณหาค่าพิกัดแตละจุด จากนั้นก็จัดทำแผนที่แสดงความลึกของแม่น้ำหรือทะเลในบริเวณที่ทำการสำรวจ ถึงแม้กระนั้นเครื่องมือ Sextant จะให้ค่าความละเอียดด้านมุมไม่ดีนัก แต่ค่าพิกัดที่ได้สมัยนั้นก็เพียงพอสำหรับงานในทะเลหรือแม่น้ำ

หัวข้อต่อๆไปจะกล่าวถึงที่ไปที่มาของสูตรที่ผมใช้สำหรับเครื่องคิดเลข fx-9860G ถ้าผู้อ่านไม่สนใจก็ข้ามไปที่การใช้โปรแกรมเครื่องคิดเลขด้านท้ายๆเลยครับ

หลักการคำนวณ Resection

อัลกอริทึ่มที่ผมกล่าวไปนั้นตั้งแต่ยุคอดีตกาลนั้นมากกว่า 500 อัลกอริทึ่ม แต่ส่วนใหญ่แล้วอาศัยหลักการคล้ายๆกันคือใช้หลักวงกลมสามวงตัดกันที่จุด P วงแรกจะลากผ่านจุด A-P-B วงที่สองลากผ่านจุด B-C-P วงที่สามลากผ่าน C-P-A ดังรูปด้านล่าง

ภาวะเอกฐาน (Singularity) ที่อัลกอริทึ่มล้มเหลว

ผมขอยืมคำแปล Singularity ที่แปลว่าภาวะเอกฐานจากเรื่องหลุมดำในทฤษฎีฟิสิกส์ควอนตัมหน่อย เพราะมันได้ใจความคือภาวะที่ทฤษฎีทางคณิตศาสตร์ล้มเหลว คือเหมือนกับพลัดตกลงไปในหลุมดำประมาณนั้น

การคำนวณ Resection ที่ใช้วงกลมสามวงมาตัดกันดังรูปด้านบน แต่จะเกิดอะไรขึ้น ถ้าจุดทั้ง 4 จุดนี้อยู่บนวงกลมวงเดียวกัน ก็หมายความว่าวงกลมสามวงนั้นจะซ้อนทับกันทั้งสามวง จนไม่สามารถหาจุดตัดกันได้ ดังนั้น Resection ไม่มีสูตรหรืออัลกอริทึ่มไหนในบรรณพิภพนี้ที่สามารถคำนวณได้บนภาวะเอกฐาน

ภาวะเอกฐานเสมือน (Pseudo Singularity)

ภาวะเอกฐานเสมือนเป็นสภาวะที่จุด P มาอยู่บนเส้นตรงระหว่าง A-B หรือ B-C หรือ A-C ด้านล่างจะเป็นกรณีจุด P อยู่บนเส้นตรงระหว่างจุด B และ C จะทำให้มุม β มีค่ากับ π เรเดียน (หรือเท่ากับ 180 องศา) หรือถ้าขยับจุด P ให้เลยออกจากจุด B แตยังอยู่ในแนวเส้นตรง ในกรณีนี้จะได้ มุม β = 0

ภาวะเอกฐานเสมือนนี้สูตรหลายๆสูตรไม่สามารถหาค่าได้เช่นสูตร Tienstra Method

อัลกอริทึ่มสมัยใหม่ (Modern Algorithm)

เท่าที่ผมทราบในปัจจุบันตัวที่ทำให้เกิดสูตรคณิตศาสตร์ใหม่ๆมาจากวงการ Robot ที่ต้องการให้ค่าพิกัดของหุ่นยนต์ในการเคลื่อนไหวได้แม่นยำ เนื่องจากหุ่นยนต์ทำงานอยู่ในอาคาร จึงทำให้ระบบให้ค่าพิกัด GNSS ไม่สามารถนำมาใช้งานได้ หุ่นยนต์ในที่นี้ไม่ได้หมายถึงหุ่นยนต์ที่ติดตั้งแบบอยู่กับที่ในโรงงานนะครับ แต่เป็นหุ่นยนต์ที่สามารถเคลื่อนไหวได้อิสระ ตัวอย่างง่ายๆได้แก่การแข่งขันหุ่นยนต์ของนักศึกษาในอินดอร์ อดึตกาลสูตรเหล้านี้มาจากนักคณิตศาสคร์ แต่สำหรับสูตรสมัยใหม่เนื่องจากความต้องการใช้งานในวงการหุ่นยนต์ ทำให้คนที่คิดค้นสูตรสมัยใหม่กลายเป็นวิศวกรไฟฟ้าหรือวิศวกรเครื่องกล เท่าที่ผมศึกษางานวิจัยในเบื้องต้นผมสนใจงานของ

    1. A New Three Object Triangulation Algorithm for Mobile Robot Positioning โดย Vincent Pierlot and Marc Van Droogenbroeck ทั้งสองท่านจบวิศวกรไฟฟ้า งานวิจัยนี้มีโค้ดภาษา C ด้วย แต่เนื่องจากลิขสิทธิ์ที่ระบุให้ใช้ในวงการศึกษาหรือใช้งานส่วนตัวเท่านั้น ผมจึงไม่สามารถนำโค้ดมาใช้งานได้เพราะยังกำกวม ความจริงงานทั้ง 2 ท่านได้รวบรวมอัลกอริทึ่มรวมทั้งของตัวเองด้วยทั้งหมด 18 อัลกอริทึ่มและ implement มาเป็นโค้ด พร้อมทั้งวัด benchmark ว่าใค้ดใครเร็วที่สุด ก็ตามคาดหมายโค้ดที่ทั้งสองท่านคิดค้นมานั้นเข้าวิน แต่สำหรับผมแล้วความต่างมันหนึ่งในพันส่วนของวินาทีอาจจะจำเป็นสำหรับงานให้ตำแหน่งหุ่นยนต์ที่ต้องมีการคำนวณตำแหน่งแบบ real time แต่สำหรับงานสำรวจในภาคสนามความจำเป็นกลับต่างออกไป
    2. New Method That Solves the Three-Point Resection Problem Using Straight Lines Intersection โดย Josep M. Font-Llagunes and Joaquim A. Batlle ผมชอบความคิดของสองท่านนี้ดูจากโพรไฟล์แล้วจบวิศวกรเครื่องกล แต่เนื่องจากเอกสารเข้าใจยากไปนิด ผมกลับใช้เวลาแกะอัลกอริทึมโดยใช้เวลาพอสมควรกว่าจะออกมาเป็นโค้ดได้ โปรแกรมสามารถคำนวณในสภาวะเอกฐานเสมือนได้

หลักการคำนวณโดยย่อ

ผมไม่มีเวลาที่จะศึกษาสูตรในเบื้องลึกให้กระจ่างมากนั้นแต่เน้น implement มาเป็นโค้ดภาษา C ดังนั้นความเข้าใจจึงอยู่ในระดับผิวเผิน ต่อไปผมจะบอกเล่าสิ่งที่ผมเข้าใจแบบจำกัดจำเขี่ย เราจะมาเริ่มต้น สมมติว่าตอนนี้ถ้าทราบค่าพิกัด P แล้วเราสามารถหาค่าอะซิมัทจากสถานี A, B และ C ไปยังจุด P ได้ง่ายๆ ตามรูปด้านล่าง

ค่าอะซิมัทของสถานีที่ทราบค่าพิกัด

1.คำนวณหาค่าอะซิมัทโดยประมาณ (Θ)

แต่ในชีวิตจริงค่าพิกัด P เป็นสิ่งที่เรายังไม่ทราบดังนั้นสูตรคำนวณนี้จะมีการหาค่าโดยประมาณก่อน Θ = θ – โดย  คือค่าเบี่ยงเบนไปจากค่าจริงจากที่เราประมาณ ถ้าทุกๆเส้นเบี่ยงเบนไป  เราสามารถลากเส้นไปตัดกันเป็นรู)สามเหลี่ยมเล็กๆ แต่ถ้า  ที่ประมาณการณ์ไว้มีขนาดเบี่ยงเบนไปมาก ก็จะได้ขนาดสามเหลี่ยมนี้ใหญ่ขึ้น สามเหลี่ยมนี้ทางผู้คิดค้นเรียกว่า error triangle จุดตัดแทนที่ด้วย PAB, PBC และ PAC

2.คำนวณหาค่าพิกัดของ Error Triangle

ค่าพิกัดของจุดตัด P นี้สามารถคำนวณได้จากสูตร

โดยที่ mA = cot(Θ), mB = cot(Θ – α) และ mC = cot(Θ – α -β) ไม่ลืมว่า Θ คือค่าอะซิมัทโดยประมาณ

3.คำนวณหาค่าพิกัดของ Centers Triangle

ถ้าจากจุด P ลากเส้นตรงไปหาสถานีที่ทราบค่าพิกัดแล้วแบ่งครึ่งลากเส้นตั้งจาก เราจะได้สามเหลี่ยมอีกชุดหนึ่งเรียกว่า centers triangle  และเป็นสามเหลี่ยมคล้ายสามเหลี่ยม error triangle ดังนั้นความสัมพันธ์ด้านมุมและระยะระหว่างสามเหลี่ยมสองรูปนี้สามารถคำนวณได้ ดังนั้นค่าพิกัดของ centers triangle สามารถคำนวณหาค่าพิกัดจุดตัด CAB, CBC และ CAC ได้จากสูตรดังต่อไปนี้

4.คำนวณมุมเบี่ยงเบน

ค่าเบี่ยงเบนเมื่อคำนวณมาได้แล้วสามารถนำไปบวกหรือลบกับค่าอะซิมัทประมาณการในครั้งแรกจะได้ค่าอะซิมัทที่ถูกต้อง

สามารถคำนวณสมการ (9) จากระยะทางแต่ละด้านของ error triangle และ centers triangle เช่นตัวอย่าง |δθ| = arcsin(ระยะทางระหว่างจุด PAB– PBC / ระยะทางจุด CAB– CBC )

หรือในสมการ (10) สามารถใช้พื้นที่ของสามเหลี่ยมสองรูปนี้ได้

5.คำนวณหาเครื่องหมายมุมเบี่ยงเบน

ก่อนหน้านี้ที่แสดงค่าที่คำนวณได้ในสมการ (9) และ (10) จะเห็นว่าติดเครื่องหมาย absolute ไว้คือยังไม่ได้คิดเครื่องหมาย ส่วนเครื่องหมายมุมเบี่ยงเบนหาได้ดังนี้

ทางผู้พัฒนาแสดงทิศทางของ error triangle เมื่อเทียบ center triangle ตามเครื่องหมายของ error triangle ดังนี้

อาจจะดูยากไปนิดเป็นการคูณไขว้กัน ดูตัวอย่างเพื่อความง่าย

sign = (xPAC-xPBC)*(yCAC-yCBC) – (xCAC-xCBC)*(yPAC-yPBC)

ค่าของ  sign จะออกมาเป็นบวกหรือเป็นลบ แล้วจะเอาเครื่องหมายนี้ไปใส่ให้สมการในข้อต่อไป

6.คำนวณหาอะซิมัทที่ถูกต้อง

สมการ θ=Θ +sign(dθ)

7.คำนวณหาพิกัดของจุดตัด Resection

ถ้าจุดตัดไม่ตกหลุมดำ ก็สามารถคำนวณหาจุดตัดได้จาก 1 ใน 3 สมการ ของสมการ (1), (2) หรือ (3) เช่นตัวอย่าง

mA = cot(θ)
mB = cot(θ – α)
xP = (mA x xA – mB x xB – yA + yB) / (mA – mB)
yP = mA x (xP – xA) + yA

การคำนวณเมื่อจุดตัดตกภาวะเอกฐานเสมือน

จะมี 3 กรณีคือ

1) ค่า α = 180 หรือ α = 0

2)ค่า β = 180 หรือ β = 0

3)ค่ามุม α+β = 180 หรือ α+β = 0

จากการคำนวณในข้อ 3 จะสังเกตในสูตร (5) จะมีตัวคูณด้วย cot(α) อยู่ ในกรณีนี้จุดตัด P อยู่บนเส้นตรงระหว่างจุด A และ B ดังนั้นมุม α = 180 องศาจะทำให้ cot(α) ไม่สามารถคำนวณได้เพราะค่าเป็นอนันต์ (infinity)  ในเคสนี้เราจะไม่คำนวณหาจุด CAB เพราะหาไม่ได้นั่นเอง แต่จุด CBC และ CAC ก็ยังหาได้ปกติ ดังนั้นในกระบวนการสุดท้ายค่าพิกัดของจุด P สามารถคำนวณได้จากการใช้สมการอีก 2 สมการคือสมการ (2) และ (3)

ไม่ใช้สมการ (1) เพราะมีค่า (mA – mB)  = 0 ทำให้ห่าค่า xP ไม่ได้

ข้อสังเกต สามารถลากวงกลมได้แค่ 2 วงเท่านั้นคือวงกลม A-P-C และ B-P-C ส่วนอีกวงลากไ่ม่ได้เพราะว่า A-P-B เป็นเส้นตรง

ดาวน์โหลด (Download) โปรแกรมสำหรับเครื่องคิดเลข fx-9860G

ไปที่หน้าดาวน์โหลดมองหาโปรแกรม Resection เมื่อดาวน์โหลดมาแล้วจะได้ไฟล์ “RESCTION.G1A” ใช้โปรแกรม FA-124 ทำการโอนโปรแกรมเข้าเครื่องคิดเลข (ดูโพสต์เก่าได้วิธีการนี้) จะเห็นไอคอนปรากฎที่หน้า AddIn ดังรูป

กรณีที่ 1 ตัวอย่างงานรังวัดในงานสำรวจทั่วไป (Survey Engineering Example)

กำหนดค่าพิกัดของสถานี A, B และ C ดังนี้

วัดค่ามุม ∝ และ ∅ จากกล้อง total station ได้ดังนี้ ∝= 40°35’22.11“ และค่ามุม ∅ = 9°18’31.84“ ที่ไอคอนโปรแกรมกดคีย์ “EXE” เข้าไปป้อนค่าพิกัดสถานีทั้งสามดังนี้

จากนั้นป้อนมุมภายใน

โปรแกรมจะคำนวณหาค่าพิกัดของจุดตัด โดยที่แจ้งสถานะมาก่อนว่าคำนวณได้ Resection Solved…

กรณีที่ 2 ตัวอย่างงานที่จุดตัดตกอยู่ในภาวะเอกฐานเสมือน (Pseudo Singularity)

นี่เป็นกรณีพิเศษจริงๆ เพราะว่าหลายๆสูตรคำนวณด้วยวิธีนี้ไม่ได้เช่นสูตร Tienstra กำหนดค่าพิกัดสถานี  A (2639303.349mN, 231605.043mE) ค่าพิกัดสถานี B (2639271.845mN, 231419.755mE) และสถานี C (2639180.389mN, 231561.178mE) มุมที่รังวัดมา α = 180° มุม β = 105°3’14.94“

ข้อสังเกตุถ้ามุม α เท่ากับ 180 แสดงว่าจุดตัดตกอยู่บนเส้นตรงระหว่างสถานี A และ B แต่เขยิบเข้าไปใกล้ B มากกว่าเพราะว่ามุม β เป็นมุมป้าน มาดูการคำนวณจากเครื่องคิดเลข เมื่อเรียกโปรแกรมมาแล้วป้อนค่าพิกัดสถานีตามลำดับ A, B และ C แล้ว

จากนั้นป้อนมุม α และ β

ผลลัพธ์ที่ได้

กรณีที่ 3 ตัวอย่างจุดตัดตกหลุมดำในภาวะเอกฐาน (Singularity)

กรณีสุดท้าย โอกาสที่จะเจอแบบนี้คือสถานีทั้งสามสถานีอยู่บนวงกลมเดียวกันและจุดที่ตั้งกล้องที่ต้องการทราบค่าพิกัดและยังมาอยู่บนวงกลมเดียวกันทั้ง 4 จุด ในชีวิตจริงมีโอกาสน้อยมากเหมือนกับถูกล็อตเตอรีรางวัลที่ 1 ยังไงยังงั้น มาลองคำนวณดู

กำหนดค่าพิกัดสถานี A (2369180.389mN, 231561.178mE) สถานีพิกัดสถานี B (2639303.349mN, 231605.093mE) และสถานี C (2639478.455mN, 231509.233mE) วัดมุม α = 29°32’23.9“และ β = 18°48’43.9“

เมื่อเข้าไปในโปรแกรมป้อนค่าพิกัด A, B และ C ตามลำดับ

จากนั้นป้อนมุม α และ β ตามลำดับ

สุดท้ายโปรแกรมไม่สามารถคำนวณหาพิกัดจุดตัดได้และแสดงว่า Resection unsolved…

เครดิต (Credit)

ก็ยกเครดิตสำหรับอัลกอริทึ่มหรือสูตรคำนวณนี้ให้กับสองท่านคือ Josep M. Font-Llagunes and Joaquim A. Batlle.

ซอร์สโค้ดสูตรคำนวณ (Sourcecode)

ผมยกมาเฉพาะสูตรคำนวณตั้งชื่อฟังก์ชั่น straightLineIntersection สำหรับคนที่สนใจเรื่องโปรแกรมมิ่งก็ศึกษาโค้ดภาษาซีกันได้ครับ ไม่มีอะไรยุ่งยาก

/* Algorithm based on Josep M. Font-Llagunes and Joaquim A. Batlle.
  - Input angles are radians. 
  - Internal angles is clock-wise direction.
  - A, B and C must be located from right to left respectively.*/
bool straightLineIntersection(double *xP, double *yP,
				double alpha_AB, double alpha_BC,
				double xA, double yA, double xB, double yB, double xC, double yC)
{
  double mA, mB, mC; //slope of lines.
  double cot_12, cot_23, cot_31;
  double pAB, pAC, pBC; //Euclidean distance between station.
  double estB; //Estimated angle A-B-C.
  double xPAB, yPAB, xPBC, yPBC, xPAC, yPAC; //error triangle.
  double xCAB, yCAB, xCBC, yCBC, xCAC, yCAC; //center of triangle.
  double deltatheta;
  double theta; //first estimated and actual azimuth from P to A at the end.
  double AP, AC;
  double sign;
  double dPAC_PBC, dCAC_CBC;
  double dPAB_PBC, dCAB_CBC;
  double dPAB_PAC, dCAB_CAC;

  pAB = sqrt((xA-xB)*(xA-xB) + (yA-yB)*(yA-yB));
  pAC = sqrt((xA-xC)*(xA-xC) + (yA-yC)*(yA-yC));
  pBC = sqrt((xB-xC)*(xB-xC) + (yB-yC)*(yB-yC));

  estB = acos((pAB*pAB + pBC*pBC - pAC*pAC) / (2*pAB*pBC));
  //Check if found absolutely singularity then stop and return.
  if (((estB + alpha_AB + alpha_BC - PI) >= -0.0001) and 
      ((estB + alpha_AB + alpha_BC - PI) <= 0.0001))
    return false;

  /*first guess (theta), try to avoid for cot(angle) 
    when angle == PI or zero).*/ 
  theta = alpha_AB + alpha_BC/2.0;    
  mA = cot(theta);
  mB = cot(theta - alpha_AB);
  mC = cot(theta - alpha_AB - alpha_BC);
	
  //calc coordinates of error triangle.
  xPAB = (mA*xA - mB*xB - yA + yB) / (mA - mB);
  yPAB = mA*(xPAB - xA) + yA;  
  xPBC = (mB*xB - mC*xC - yB + yC) / (mB - mC);
  yPBC = mB*(xPBC - xB) + yB;
  xPAC = (mA*xA - mC*xC - yA + yC) / (mA - mC);
  yPAC = mA*(xPAC - xA) + yA;
	
  dPAC_PBC = sqrt((xPAC-xPBC)*(xPAC-xPBC) + (yPAC-yPBC)*(yPAC-yPBC));
  dPAB_PBC = sqrt((xPAB-xPBC)*(xPAB-xPBC) + (yPAB-yPBC)*(yPAB-yPBC));
  dPAB_PAC = sqrt((xPAB-xPAC)*(xPAB-xPAC) + (yPAB-yPAC)*(yPAB-yPAC));
  
  AP = ((xPAB - xPBC) * (yPBC - yPAC) - (xPBC - xPAC) * (yPAB - yPBC))/* / 2*/ ;
  AP = (AP < 0.0) ? -AP : AP;

  /* The next 3 Cases are psudosingularities.
    
    1st case: P is aligned with A & B.Therefore cannot calc PAB & CAB.*/
  if (alpha_AB == PI || alpha_AB == 0.0){ /* P is aligned on A & B.*/
    /* cot(alpha_AB) is infinity */
    cot_23 = cot(alpha_BC);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

    //distance CAC to CBC (center triangle).
    dCAC_CBC = sqrt((xCAC-xCBC)*(xCAC-xCBC)+(yCAC-yCBC)*(yCAC-yCBC));

    deltatheta = asin(0.5*(dPAC_PBC/dCAC_CBC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
    sign = (xPAC-xPBC)*(yCAC-yCBC) - (xCAC-xCBC)*(yPAC-yPBC);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mB = cot(theta - alpha_AB);
    mC = cot(theta - alpha_AB - alpha_BC);
  
    *xP = (mB * xB - mC * xC - yB + yC) / (mB - mC);
    *yP = mB * ((*xP) - xB) + yB; 
    return true;
  }else if ((alpha_BC == PI) || (alpha_BC == 0)){ 
    /* 2nd case: P is aligned on B & C.
                 cot(alpha_BC) is infinity */
    cot_12 = cot(alpha_AB);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

    //distance CAB ot CAC (center triangle)
    dCAB_CAC = sqrt((xCAB-xCAC)*(xCAB-xCAC)+(yCAB-yCAC)*(yCAB-yCAC));

    deltatheta = asin(0.5*(dPAB_PAC/dCAB_CAC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
    sign = (xPAB-xPAC)*(yCAB-yCAC) - (xCAB-xCAC)*(yPAB-yPAC);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
    *xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
    *yP = mA * ((*xP) - xA) + yA; 
    return true;
  }else if (((alpha_AB + alpha_BC) == PI) || ((alpha_AB + alpha_BC) == 0)){
    /* 3rd case: P is aligned on A & C. 
       cot(alpha_AB+alpha_BC) is infinity.*/
    cot_12 = cot(alpha_AB);
    cot_23 = cot(alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);

    //distance CAB ot CBC (center triangle)
    dCAB_CBC = sqrt((xCAB-xCBC)*(xCAB-xCBC)+(yCAB-yCBC)*(yCAB-yCBC));

    deltatheta = asin(0.5*(dPAB_PBC/dCAB_CBC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
	sign = (xPBC - xPAB) * (yCBC - yCAB) - (xCBC - xCAB) * (yPBC - yPAB);
	if (sign < 0.0 ) deltatheta = -deltatheta;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
	*xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
	*yP = mA * ((*xP) - xA) + yA;   
    return true;
  }else {
    /* Normal case can be calculated by other methods as well.*/
    cot_12 = cot(alpha_AB);
    cot_23 = cot(alpha_BC);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

	AC = ((xCAB - xCBC) * (yCBC - yCAC) - (xCBC - xCAC) * (yCAB - yCBC))/* / 2*/ ;
	AC = (AC < 0.0) ? -AC : AC;

    deltatheta = asin(0.5*sqrt(AP/AC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
	sign = (xPBC - xPAB) * (yCBC - yCAB) - (xCBC - xCAB) * (yPBC - yPAB);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
	*xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
	*yP = mA * ((*xP) - xA) + yA;  
    return true;
  }
}

เมื่อผมลองดี โมดิฟายด์แอพ DJI GO 4 ด้วย Deejayeye-Modder สำหรับโดรน DJI Spark

จากลองของเป็นลองดี

จากตอนที่แล้วเมื่อต้องลองของเอาโดรนเซลฟี่ DJI Spark มาบินทำแผนที่ภาพถ่ายทางอากาศ ตอนนี้เลยคำว่า”ลองของ”ไปไกลหลายช่วงตัวแล้ว เพราะแพ็ตช์หรือโมดิฟายด์แอพ DJI GO 4 เรียกง่ายว่าเป็นการ “ลองดี” ไปแล้ว เพื่อนำโดรนมาบินทำแผนที่ภาพถ่ายทางอากาศโดยที่เปิดหรือใช้ฟีเจอร์ที่ซ่อนไว้ ตอนนี้ฟีเจอร์เทียบได้กับโดรนรุ่นใหญ่เช่น Phantom 4 Pro หรือ Mavic

คำเตือน

สิ่งที่ผมกำลังจะเล่าบอกออกไป เป็นการใช้โดรนโดยที่ไม่หวังการรับประกัน ถ้าใครอยากจะลองดีก็ให้เป็นความสมัครใจของตัวท่านเอง ผมจะไม่รับผิดชอบต่อความเสียหายของโดรนของท่าน สิ่งที่จะมาเล่าสู่กันฟังถือว่าเป็นประสบการณ์และความรู้ โดยตัวผมเองเป็นคนชอบไอที ชอบเขียนโปรแกรมเป็นงานอดิเรก นิสัยส่วนตัวกับด้านไอทีชอบล้วง แคะ แกะ เกา อยู่ไม่สุข ดังนั้นในการโมดิฟาย์แอพ ถือว่าเป็นการสิ้นสุดการรับประกันโดรน DJI Spark ของผมไปโดยปริยาย ซึ่งผมสมัครใจเองครับ

ต้นทุนความเสี่ยง

มาแจกแจงราคาของสปาร์คกันนิด ผมซื้อสปาร์คแบบ fly combo ราคาในตอนนั้น 23,900 บาท ซื้อแบตเตอรีมาเพิ่มหนึ่งลูกราคา 2000 บาทถ้วน (รวมแบตเตอรีทั้งหมด 3 ลูก) ซื้อกระเป๋าสำหรับใส่โดรนมาครั้งแรก 650 บาทแต่ไม่ถูกใจเพราะใส่ของได้ไม่เยอะ ซื้อมาอีกใบราคา 1850 บาท สาย OTG 200 บาท รวมทั้งหมด 28,600 บาท ใช้เงินขนาดนี้สามารถซื้อสมาร์ทโฟนรุ่นดีๆ ได้สักหนึ่งเครื่องเลยทีเดียว

ทำไมต้องโมดีฟายด์แอพ

ความจริงโดรนแต่ละรุ่นของ DJI แอพจะเป็นส่วนหนึ่งที่เป็นตัวกำหนดว่าตัวไหนมีความสามารถอะไรบ้าง โดรนแต่ละรุ่นจะถูกจัดให้ Product อยู่ในเกรดไหนระดับไหน ตามกำลังซื้อของลูกค้า ลูกค้าที่ต้องการ Premium พันธุ์แท้มีกำลังซื้อสูงก็ควรจะมาซื้อรุ่นเทพ Inspire ที่ราคาเหยียบสองแสนบาทไปใช้ ส่วนใครมีกำลังซื้อลดหลั่นกันมาก็ไล่ตั้งแต่ Phantom 4 Pro, Mavic Pro, Mavic Air จนกระทั่ง DJI Spark โดรนเซลฟี่ราคาถูกที่สุดในไลน์การผลิดของ DJI

ฟีเจอร์ของ DJI Spark ที่ถูกซ่อนคือบินตามเส้นทางที่กำหนด (Waypoint) กับบินเป็นวงโคจร (Orbit) ก่อนหน้านี้ผมพยายามเข้าไปดูข่าวสารตามที่ DJI เคยบอกไว้ว่าอาจจะเอาการบินตามเส้นทางที่กำหนดมาใส่ให้สปาร์ค แต่ก็ตามข่าวมาสี่ ห้าเดือนแล้วก็ไม่มีความคืบหน้าอะไร และในตอนนี้ที่เขียนบทความนี้ ทางดีเจไอก็ออกโดรนรุ่น Mavic Air ตัวใหญ่กว่าสปาร์คนิดหนึ่ง ราคาแพงกว่าประมาณหมื่นกว่าบาท บินได้นานขึ้น gimbal ได้สามแกน (แต่สำหรับคนทำแผนที่ภาพถ่ายทางอากาศสองแกนก็พอครับ) แต่ก่อนจะขายบอกว่าสนับสนุนการบินด้วย waypoint แต่พอออกขายจริงๆ กลับตัดฟีเจอร์นี้ไปดื้อๆ ซะอย่างนั้น ก็ได้ก้อนอิฐไปตามระเบียบไปหลายก้อน

นักโมกลุ่ม Deejayeye-Modder

ผมเข้าไปติดตามข่าวสารบ่อยๆตามฟอรั่มของผู้ใช้โดรน ก็เลยค้นไปเจอว่ามีกลุ่มโมดิฟายด์ (modder) ชื่อรวมๆคือ Deejayeye โมดิฟาย์แอพ DJI Go 4 เพื่อเปิดฟีเจอร์ที่ซ่อนนี้สำหรับโดรนสปาร์ค เป็นโค้ดเปิดใน Github โดยการเอาไฟล์ที่ใช้สำหรับติดตั้งในแอนดรอยด์คือไฟล์ APK (Android Package) มาทำการ patch เพื่อเปิดฟีเจอร์ที่ถูกซ่อนนี้ ในตอนแรกก็ไม่มั่นใจแต่ลองเอามาทำด้วยเครื่องมือที่ทีมงานแนะนำมาพร้อมโค้ด ก็ลองดูกลับทำได้สำเร็จ ลองเอาไฟล์นี้มาติดตั้งในโทรศัพท์แอนดรอยด์ของผมก็สามารถใช้งานได้

ย้อนรอยตอนลองของ

ขอเล่าย้อนรอยสั้นๆก่อนหน้านี้ ผมใช้แอพ Litchi ผมพอใจการทำงานของ Litchi ปัญหาเมื่อโดรนต่อกับรีโมทคอนโทรล (Remote controller) สัญญานหลุดจากกันแต่ก็ reconnect ให้ใหม่ได้เร็ว ไม่ต้องลุ้นมาก แอพมีความเสถียรพอสมควร นานๆจะแครชที แต่ข้อเสียคือสุ่มเสี่ยงกับการไม่ได้รับประกันจาก DJI และข้อเสียอีกอย่างคือไม่สนับสนุนการบินตามเส้นทางที่กำหนด (waypoint) สำหรับโดรน DJI Spark ที่ไม่สนับสนุนเพราะว่าเครื่องมือ SDK (Software Development Kit) ของ DJI ไม่มีไว้ให้นั่นเอง คำว่าไม่สนับสนุนคือสั่งให้บินไปตามเส้นทางไม่ได้ แต่สามารถสร้างเส้น waypoint นี้ได้

ผมกำหนดเส้นทางการบิน (waypoint) จากที่มีในแอพ เรียกว่าสามารถใส่จุดล่วงหน้าจากแอพโดยการจิ้มแต่ละจุดไปบน map แต่ข้อเสียคือไม่สามารถนำเข้าไฟล์จาก kml ได้ เครื่องมือสร้าง auto waypoint จากรูปปิดที่กำหนดให้ก็ไม่มี ตอนบินก็เรียกเส้นทางการบินนี้ให้แสดงบนแผนที่ จากนั้นก็บังคับโดรนบินไปตามเส้นทางเหล่านี้ คุณภาพของการบินให้ตรงกับเส้นทางที่กำหนดนี่ต้องอาศัยทักษะพอสมควร แต่ส่วนใหญ่ผมเป๋ไปด้านซ้ายด้านขวาบ้าง แต่ผมออกแบบให้เส้นแนวบิน Overlap กันมากขึ้นคือให้เส้นแนวบินเข้ามาใกล้กันมากกว่าทฤษฎีจะได้ชดเชยเมื่อบินไม่ตรงแนว ตอนบินก็สั่งให้ gimbal ก้มด้วยมุม 85 องศา (เต็มที่แล้ว ไม่ได้ 90 องศา) จากนั้นก็สั่งถ่ายรูปด้วย interval ทุกๆ 3 วินาที ลองดูรูปด้านล่างจะเห็นว่าแนวบินไม่เป็นเส้นตรงเฉไปเฉมา

ตั้งแต่ผมซื้อโดรนมา เคยเอามาเซลฟี่ประมาณ 4-5 ครั้งแค่นั้นเอง จากนั้นเอามาบินทำแผนที่ภาพถ่ายทางอากาศทั้งหมด ดังนั้นฟีเจอร์ที่ผมต้องการที่สุดก็คือบินตามเส้นทางที่กำหนดเท่านั้นเพราะจะได้เบาแรงเมื่อเอาโดรนขึ้นไปบนฟ้า เพิ่มเติมอีกนิดผมเคยใช้แอพทางการของ DJI GO 4 อยู่ไม่กี่ครั้ง จากนั้นก็ใช้ Litchi มาตลอด

เมื่อ DJI กลับลำในกรณี Mavic Air

เท่าที่ผมติดตามเป็นแฟนของโดรน DJI มาสักระยะหนึ่งพบว่านอกจากสินค้าที่ดีด้านฮาร์ดแวร์ ส่วนด้านบริการยังไม่ทราบเพราะไม่เคยได้ใช้ ส่วนซอฟต์แวร์จะดีหรือแย่ค่อยมาว่ากันอีกที ในกรณีของ Mavic Air จะวางขายมีการออกสื่อทั้งทางเว็บทางการของ DJI เองว่า Mavic Air สนับสนุนการบินตามเส้นทางที่กำหนด ผมรู้สึกผิดหวังนิดๆว่าไม่น่ารีบซื้อ Spark มาเลย เตรียมตัวขายต่อครับ จะเอาเงินไปซื้อ Mavic Air แต่สุดท้ายฟ้าผ่าเพราะก่อนหน้าจะออกวางขายไม่กี่วัน DJI ก็ตัดฟีเจอร์นี้ออกจากเว็บไซต์แบบหน้าตาเฉย ตอนนั่นผมไม่รู้จะดีใจหรือผิดหวังดี ที่ดีใจคือไม่ได้ขายสปาร์ค ที่ผิดหวังคือนโยบายที่เอาแน่นอนไม่ได้ของ DJI

พบแสงสว่างบนทางแห่งความเสี่ยง

ในที่สุดกับก็มาพบโมดิฟายด์แอพด้วยเครื่องมือของ Deejayeye ตามที่ผมกล่าวไปข้างต้น พยายามอ่านและทำความเข้าใจอยู่หลายวัน คันไม้คันมือทนไม่ไหว ก็เลยตัดสินใจลองดู ถ้าสำเร็จหมายถึงการรับประกันก็สิ้นสุดทันที ผมดาวน์โหลดไฟล์โดยที่ไฟล์ประกอบด้วยโค้ด โครงสร้างไดเรคทอรีเปล่าๆ ที่จะต้องไปดาวน์โหลดเครื่องมือมาใส่ในไดเรคทอรีนี้ และมีไดเรคทอรีที่ต้องไปหาไฟล์ติดตั้งแอพ DJI GO 4 ที่เป็นแพ็คเกจ APK มาใส่เพื่อให้โปรแกรมสามารถแพ็ตช์ได้

แพ็คเกจ APK สามารถหาดาวน์โหลดได้เฉพาะ DJI GO 4 รุ่น 4.1.4 ถึง 4.1.9 แต่รุ่นหลังจากนี้ทาง DJI ได้ทำการ encrypted ไว้ ไม่สามารถหาได้บนดิน ต้องมุดใต้ดินไปหาครับ

ปัญหา OTG (On The Go)

ปัญหาของ OTG บนแอนดรอยด์สำหรับใช้บนแอพ DJI GO 4 ถือว่าเป็นปัญหาอลเวง เดี๋ยว DJI สนับสนุนเดี๋ยวถอดออก ผมซื้อสายมา 200 บาทแต่ไม่ได้ใช้เลย แต่ที่ได้ยินมาคือฝั่ง IOS ใช้ได้ดีไม่ปัญหาเหมือนฝั่งแอนดรอยด์

OTG คือสายเคเบิลที่เอามาต่อระหว่างรีโมทคอนโทรลกับโทรศัพท์มือถือที่ลงแอพ DJI GO 4 คือที่ได้ยินมาตลอด ถ้ามันต่อได้ดีเสถียร จะเป็นประโยชน์มากกว่าการต่อด้วยไวไฟเพราะไวไฟนี้อาจจะไปกวนไวไฟที่ต่อระหว่างรีโมทคอนโทรลกับโดรนที่บินกลางอากาศ

เลือกเวอร์ชั่นของแอพ DJI GO 4

ผมหาแพ็คเกจ apk ของแอพตอนแรกเลือก 4.1.22 รุ่นล่าสุดในขณะที่เขียนบทความ ทำการแพ็ตช์ ติดตั้งลงโทรศัพท์มือถือปรากฎว่าสาย OTG ใช้ไม่ได้ครับ เพราะตอนแรกอ่านผ่านๆว่ารุ่นหลังๆสนับสนุนแล้ว พอไปอ่านดีๆกลับผมว่า DJI ไม่สนับสนุนในแอพรุ่นนี้ สุดท้ายพบว่ารุ่น 4.1.15 ที่สนับสนุน ก็เลยต้องไปหาแพ็คเกจ apk รุ่นนี้มาทำการแพ็ตช์ แล้วทำการติดตั้งลงมือถือ เลือก Flight mode คือปิดการสื่อสารทุกอย่างบนโทรศัพท์มือถือ เปิดแอพ DJI GO 4 รุ่น 4.1.15 ในที่สุด OTG ใช้ได้

เปิดฟีเจอร์ Waypoint

เมื่อเปิดแอพ DJI GO 4 ทำการต่อสายรีโมทคอนโทรล จากนั้นก็ต่อกับโดรน ช่่วงนี้ลองในบ้านได้ ทำการปรับค่า config ต่างๆ แล้วลองแท็บไปในโหมด Fly intelligent จะเห็นว่า การบินด้วยเส้นทางที่กำหนด (Waypoints) เปิดมาเป็นที่เรียบร้อยพร้อมที่จะไปลองทดสอบ

ปัญหาเมื่อเส้นทางกำหนดการบินไม่สามารถกำหนดล่วงหน้าได้

ผมได้บอกไปแล้วว่าด้าน hardware โดรนในค่ายของ DJI ทำได้ยอดเยี่ยม แต่ด้านซอฟท์แวร์ กลับได้ยินเสียงอึงคะนึงหลายๆอย่าง ที่หนักๆแรงๆคือการบินด้วย waypoint ไม่สามารถป้อนหรือใส่ได้ก่อนแบบที่ Litchi หรือแอพตัวอื่นทำได้ จะวางแผนการบินล่วงหน้าทาง DJI ก็มีให้คือเสียเงินไปซื้อ DJI Ground Station สำหรับ IOS แต่ไม่มีสำหรับฝั่งแอนดรอยด์ที่ผมใช้อยู่

การวาง waypoint จะต้องเอาเครื่องโดรนขึ้นไปบนฟ้าตำแหน่งที่จะต้องการบินแล้วทำการ record จุดที่ละจุดจนครบ ฟังดูง่ายสำหรับการตั้ง waypoint สำหรับเอาไปถ่ายภาพสวยๆหรือถ่ายวีดีโอ แต่ไม่ใช่งานบินทำแผนที่ด้วยภาพถ่ายทางอากาศ เพราะเราต้องการเส้นตรงที่ขนานกัน เพื่อให้ overlap ได้ตรงกับที่คำนวณไว้ และเส้นตรงเหล่านี้ไม่ได้มีแค่เส้น สองเส้น บางครั้งเป็นร้อยเส้น จะทำอย่างไรดี และที่ตลกคือเมื่อเราวางจุด waypoint เสร็จ ถ้าเป็นงานถ่ายภาพทำแผนที่ภาพถ่ายทางอากาศ มีเสน waypoint หลายๆเส้น แบตเตอรีก็คงใกล้จะหมด ต้องเอาโดรนลงมาบนพื้นใส่แบตเตอรี่แล้วบินขึ้นไปใหม่ แล้วค่อยใช้ waypoint ในการบินอีกครั้งเพื่อถ่ายภาพ

ปัญหาอีกอย่างคือในการบินตามเส้นทางที่กำหนด ต้องทำการเป็นลำดับ 1, 2, 3, 4, …. (ไม่ต้องถึงไลน์สุดท้ายก็สามารถเรียกโดรนกลับมาได้) แต่ตัวอย่างเช่นต้องการบินจาก 3, 4 ,5, 6 ทำไม่ได้ครับ ต้องไล่ตั้งแต่ 1, 2, 3 ซึ่งเป็นข้อเสียอย่างแรง

ตามล่าหาวิธีการสร้างเส้นทางการบินที่กำหนดล่วงหน้า

จากปัญหาที่พบผมไม่ต้องไปค้นที่ไหนไกล ในกลุ่มนักโมดิฟายด์ ก็มีคนเห็นปัญหานี้ เขาใช้เครื่องที่ root ตามเข้าไปในดูในโฟลเดอร์ของแอพบนมือถือก็พบว่ามีไฟล์ที่เป็นฐานข้อมูล sqlite ข้างในมีตารางที่แสดง waypoint ด้วยสตริงแบบ json จากนั้นก็เพิ่มฟีเจอร์เข้าไปใน DJI GO 4 เพื่อทำให้ไฟล์นี้เป็น public คือเครื่องไม่ root สามารถไปแก้ไขได้ ในขณะนี้รู้ว่าแอพทำการเก็บข้อมูลที่ไหนและรู้รูปแบบคือเป็นฐานข้อมูล sqlite

Mission Planner สุดยอดโปรแกรมออกแบบเส้นทางการบิน

โปรแกรมนี้บน Desktop PC เป็นโปรแกรมฟรี ใช้งานง่ายมาก ไปดาวน์โหลดได้ที่ ลิ๊งค์นี้  โปรแกรมนี้สามารถสร้าง Polygon ด้วยการจุดบน map ได้ง่ายๆ หรือจะนำเข้าจาก shape file ก็ได้ เมื่อได้พื้นที่แล้วสามารถสร้าง waypoint ได้จากการป้อนค่ามุมอะซิมุทแนวการบิน ความสูงของโดรน และค่าอีกหลายๆค่า จากนั้นโปรแกรมจะสร้าง waypoint ให้ ซึ่งเราสามารถจัดเก็บเป็นไฟล์ในรูปแบบรหัสแอสกี้ (text file) ได้ แต่ตอนนี้ได้ไฟล์มาแต่ยังไม่โดนใจแอพ DJI GO 4 ต้องทำการแปลงเป็นฐานข้อมูล sqlite ก่อน

มาลองดูไฟล์ waypoints ที่ได้จากโปรแกรม Mission Planner

QGC WPL 110
0 1 0 16 0 0 0 0 23.864033 90.366674 8.000000 1
1 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86296860 90.36620300 50.000000 1
2 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86312430 90.36512590 50.000000 1
3 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86336720 90.36516850 50.000000 1
4 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86321230 90.36623980 50.000000 1
5 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86345610 90.36627670 50.000000 1
6 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86361010 90.36521110 50.000000 1
7 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86385300 90.36525370 50.000000 1
8 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86369980 90.36631360 50.000000 1
9 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86394360 90.36635050 50.000000 1
10 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86409600 90.36529640 50.000000 1
11 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86433890 90.36533900 50.000000 1
12 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86418730 90.36638740 50.000000 1
13 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86443110 90.36642420 50.000000 1
14 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86458180 90.36538160 50.000000 1
15 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86482470 90.36542420 50.000000 1
16 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86467480 90.36646110 50.000000 1
17 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86491860 90.36649800 50.000000 1
18 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86506770 90.36546680 50.000000 1
19 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86531060 90.36550940 50.000000 1
20 0 0 16 0.00000000 0.00000000 0.00000000 0.00000000 23.86516230 90.36653490 50.000000 1

ArduMissionToDJISQL ทูลส์มาช่วยแปลงข้อมูล

และนักโมดิฟายด์ท่านนี้ก็ได้สร้างทูลส์แปลงจาก textfile เป็นไฟล์ sql ซึ่งเป็น text file เช่นเดียวกันแต่เป็นไฟล์โค๊ดภาษา sql เพื่อเตรียมปั๊มป์ข้อมูลนี้เข้าไปในฐานข้อมูล ไปหาดาวน์โหลดได้ที่ฟอรั่มตามลิ๊งค์นี้

ไฟล์ sql ที่ได้จากการแปลง waypoints ก็แบบนี้ครับ

INSERT INTO dji_pilot_dji_groundstation_controller_DataMgr_DJIWPCollectionItem ( distance, pointsJsonStr, autoAddFlag, createdDate )
VALUES (1328.54, ‘{“points”:[{“craftYaw”:-81,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86296860000000,”lng”:90.36620300000000},{“craftYaw”:9,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86312430000000,”lng”:90.36512590000000},{“craftYaw”:99,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86336720000000,”lng”:90.36516850000000},{“craftYaw”:8,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86321230000000,”lng”:90.36623980000000},{“craftYaw”:-81,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86345610000000,”lng”:90.36627670000000},{“craftYaw”:9,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86361010000000,”lng”:90.36521110000000},{“craftYaw”:99,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86385300000000,”lng”:90.36525370000000},{“craftYaw”:8,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86369980000000,”lng”:90.36631360000000},{“craftYaw”:-81,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86394360000000,”lng”:90.36635050000000},{“craftYaw”:9,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86409600000000,”lng”:90.36529640000001},{“craftYaw”:99,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86433890000000,”lng”:90.36533900000001},{“craftYaw”:8,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86418730000000,”lng”:90.36638739999999},{“craftYaw”:-81,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86443110000000,”lng”:90.36642420000000},{“craftYaw”:9,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86458180000000,”lng”:90.36538160000001},{“craftYaw”:99,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86482470000000,”lng”:90.36542420000001},{“craftYaw”:8,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86467480000000,”lng”:90.36646110000000},{“craftYaw”:-81,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86491860000000,”lng”:90.36649800000001},{“craftYaw”:9,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86506770000000,”lng”:90.36546679999999},{“craftYaw”:99,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86531060000000,”lng”:90.36550939999999},{“craftYaw”:99,”gimbalPitch”:-85,”gimbalYaw”:0,”height”:50.00000000000000,”lat”:23.86516230000000,”lng”:90.36653490000000}]}’,1,1524200609000)

SQLite Studio โปรแกรมช่วยบริหารฐานข้อมูล SQLite

SQLite Studio เป็นโปรแกรมฟรีและเปิดโค้ด ผมใช้มานานแล้ว เมื่อติดตั้งแล้ว ผมจะใช้โอนไฟล์จากแอพ DJI GO 4 ชื่อไฟล์คือ dji_mod_4_1_15.db ในเครื่องผมอยู่ที่ /mnt/storage/DJI/ จากนั้น copy มาฝั่ง desktop pc ทำการแก้ไขด้วย SQLite Studio ด้วยการ Add Database แล้วเลือกไฟล์นี้ จากนั้นมองหาตารางข้อมูลชื่อ “dji_pilot_dji_groundstation_controller_DataMgr_DJIWPCollectionItem” เปิด Sqlite Editor จากนั้นเปิดไฟล์ sql  ด้วย Notepad จากขั้นตอนที่แล้วทำการ copy เนื้อหาไปยังคลิปบอร์ด แล้วทำการ paste ที่ Sqlite Editor นี้แล้วทำการ Execute Query ข้อมูลจะถูกปั๊มป์เข้าไปในฐานข้อมูล จากนั้นจะ copy ไฟล์ ฐานข้อมูลนี้กลับไปยังโทรศัพท์มือถือเพื่อไปทับกับไฟล์เดิม

ทดสอบบินตามเส้นทางที่กำหนด

วันแรกที่ผมต้องการลองบินแบบบินตามเส้นทางที่กำหนด (waypoint) รู้สึกใจไม่ค่อยดี หนึ่งนั้นที่เคยบอกไปว่าไม่ค่อยคุ้นกับแอพ DJI GO 4 เพราะไม่ค่อยได้ใช้ และอีกอย่างคือไฟล์เส้นทางการบินที่เตรียมมาไม่สามารถเปิดดูได้จากแอพ DJI GO 4 ก่อน ว่ามีอะไรบ้าง นี่ก็เป็นข้อเสียที่ร้ายแรงอีกอย่างครับ ทำไมให้เปิดดูไม่ได้ก่อน ต้องเอาโดรนบินขึ้นไปบนฟ้าเท่านั้นจึงจะดูได้ แหมถ้าเป็นยุคซามูไร ทีมงานผู้พัฒนาชุดนี้ควรจะต้องคว้านท้องตัวเอง (เอาฮานะครับ) เมื่อขึ้นไปบนท้องฟ้าแล้วผมก็ดูไฟล์แนวบินที่ผมสร้างเอาไว้ ในฐานข้อมูลนั้นจะมี location ด้วยผมใส่คำอธิบายไปด้วยสั้นๆ เพื่อให้หาไฟล์ง่าย เพราะ DJI GO 4 เลือกที่จะเน้นแสดงผลเส้นทางการบินนี้ด้วยวันเวลาที่สร้างซึ่งดูยากมาก

ครั้งแรกที่ลองบินตาม waypoint ผมเลือกเอาเส้นทางการบินตามแนวรถไฟฟ้าที่กำลังก่อสร้างนอกเมือง บริเวณนั้นมีหนองน้ำเยอะพอสมควร สลับด้วยทุ่งหญ้า เมื่อบินขึ้นท้องฟ้าปรากฎว่าผมไปยืนอยู่ผิดตำแหน่งคือห่างจาก waypoint ไปประมาณ 400 เมตร (ถือว่าไกลสำหรับสปาร์ค) ด้วยความที่ไม่อยากเสียเวลาก็เลย Apply เพื่ออัพโหลด waypoint ชุดนี้เข้าโดรน จากนั้นโดรนก็บินไปตาม waypoint จุดที่ 1 พอบินไปได้สัก 6 เส้น ผมลอง stop เพื่อจะเรียกเครื่องกลับ เป็นเรื่องครับ สัญญาณกลับขาดหายไปดื้อๆ ทั้งๆตอนที่บินอยู่ในตอนนั้นโดรนส่งรูปที่ถ่ายมาให้โทรศัพท์มือถือดูได้ตลอด ก่อนสัญญาณจะหลุดผมดูแล้วมีแบตเตอรีเหลือ 38% เมื่อติดต่อกันไม่ได้ผมก็เดินจ้ำอ้าวไปยังจุดที่โดรนบินค้างอยู่กลางอากาศแต่ไม่ทราบว่าอยู่ตรงไหน ด้วยอารามรีบร้อนกลับเลยไปอีกทางหนึ่ง เมื่อตั้งสติได้ก็มาดูที่แอพอีกทีดูจุดสุดท้ายบนแผนที่ ก็เลยวิ่งกันมาที่จุดนั้น เดชะบุญปรากฎว่าโดรนแลนดิ้งลงมาเอง อยู่กลางถนนลาดยางเล็กๆที่ไม่มีใครใช้ แบตเตอรีกระพริบอยู่ พอผมไปถึงแบตเตอรีก็หมดพอดี ผมลองเปลี่ยนแบตเตอรีลูกใหม่ใส่เข้าไปทดลองบินขึ้นอีกครั้งก็ยังดีอยู่ ไม่มีอะไรเสียหาย เมื่อกลับไปผมเอารูปที่ถ่ายมาดู จุดสุดท้ายที่ถ่ายเป็นทุ่งหญ้า แต่ก็สงสัยว่าเครื่องมาแลนดิ้งลงที่ถนนลาดยางห่างออกไป 20 เมตรได้อย่างไร และปลอดภัยด้วย ถือเป็นความโชคดีมากๆเนื่องจากในบริเวณนั้นส่วนใหญ่เป็นหนองน้ำ

ผมประเมินความผิดพลาดครั้งนี้น่ามาจากจุด home อยู่ห่างจากโดรนที่กำลังบินมากเกินไป ในขณะที่เรียกกลับนั้นสัญญานเกิดหลุดจนสุดท้ายแบตเตอรีคงไม่พอที่จะกลับเลยแลนดิ้งลงเอง อย่างที่สองเป็นไปได้หรือไม่มาจากสาย OTG ที่ไม่เสถียร

ไม่พบปัญหาในการทดสอบในภายหลัง

วันต่อมาผมก็เอาโดรนพร้อมทั้งทำ waypoint ประมาณ 3 ชุด แต่ละชุดผมคำนวณระยะทางและความเร็วของการบินโดรนซึ่งผมไม่ให้เกิน 12 กม.ต่อชม. ใช้เวลาประมาณแค่ 9-10 นาทีเท่านั้น (แบตเตอรีตามสเป็คแล้วใช้ได้ 15 นาที) และจุด home ที่ไปยืนปล่อยโดรนต้องเป็นจุดที่อยู่ในพื้นที่นั้นๆ ป้องกันโดรนบินออกไปไกลทั้งขาไปและขากลับ วันที่สองนี้ไม่มีปัญหาครับ สัญญาณไม่หลุด นิ่ง และที่สำคัญคือในขณะนั้นลมแรงไปนิด เพราะมีเมฆฝนตั้งเค้าไกลๆ แต่โดรนสามารถบินไปตามแนวได้อย่างตรงแนว ผิดกับที่ผมบินด้วย manual แบบหน้ามือกับหลังมือ และแอพก็เตือนตลอดว่าลมแรงให้บินด้วยความระมัดระวัง เมื่อบินจบแนวเส้นทางการบินที่กำหนดไว้แล้ว เครื่องก็บินกลับมาจุดปล่อย (home) ได้อย่างปลอดภัย ลองดูรูปด้านล่างจะเห็นว่าแนวบินเป็นเส้นตรง

สรุป

ผมถือว่าภารกิจลองดีครั้งนี้ประสบความสำเร็จด้วยดีแต่ก็ผ่านความหวุดหวุดหวาดเสียวมาพอสมควรในกรณีที่สัญญาณหลุดจนโดรน landing ลงมาเอง ในส่วนของแอพ DJI GO 4 เองยังมีฟีเจอร์หลายอย่างที่ต้องพัฒนาปรับปรุงอีกมากมาย ตามที่ในฟอรั่มผู้ใช้งานได้เรียกร้องกันมาตลอด สำหรับประสบการณ์ของผมในครั้งนี้ก็ถ่ายทอดให้ผู้อ่านพอหอมปากหอมคอและอย่าได้ขอไฟล์แพ็คเกจที่ผมแพ็ตช์ตัวนี้มาเลยนะครับเพราะเป็นเรื่องการละเมิดลิขสิทธิ์ ติดตามกันต่อไปครับ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 4 โปรแกรมพื้นฐานงานสำรวจชุดที่ 1 (COGO SSE 1)

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 4 โปรแกรมพื้นฐานงานสำรวจชุดที่ 1 (COGO SSE 1)

COGO (Coordinate Geometry)

ผมพยายามจะแปลคำนี้เป็นภาษาไทยอยู่นานทีเดียว แต่สุดท้ายขอทับศัพท์ดีกว่า จริงๆแล้วงานสำรวจคืองานที่เกี่ยวกับทรงเรขาคณิต (Geometry) อยู่แล้ว และต้องสามารถระบุค่าพิกัด (Coordinate) ทุกๆจุดได้บนเรขาคณิตนั้นๆ ความเกี่ยวข้องระหว่างรูปทรงเรขาคณติกับค่าพิกัดจะเกี่ยวข้องกันด้วยมุมและระยะทางเป็นส่วนใหญ่

Selected Serie 1 (SSE 1)

คำนี้เอามันครับ ผมนึกถึงโปรแกรมตระกูลไมโครสเตชัน (Microstation) ที่มักจะใช้คำนี้บอกรุนของโปรแกรม ดังนั้นคำว่า  Selected Serie 1 คำแปลก็ประมาณว่าเลือกสรรแล้วชุดที่ 1

โปรแกรมพื้นฐานงานสำรวจชุดที่ 1 (COGO SSE 1)

ก่อนหน้านี้ผมเขียนโปรแกรมภาษาซีสำหรับเครื่องคิดเลข Casio fx-9860G II SD มาหลายตอนแต่เป็นโปรแกรมระดับ advance มาในตอนนี้จะกลับมาที่พื้นฐานงานสำรวจที่ต้องเกี่ยวข้องกับค่าพิกัด มุมและระยะทาง

ดาวน์โหลดและติดตั้ง

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรม COGO SSE1 แล้วดาวน์โหลดจะได้ไฟล์ COGOSSE1.G1A  แล้ว copy ไฟล์ไปที่เครื่องคิดเลขตามวิธีขั้นตอนที่ผมได้บอกไว้ก่อนหน้านี้

ส่วนประกอบของโปรแกรม

สำหรับโปรแกรมพื้นฐานงานสำรวจในชุดนี้จะจัดโปรแกรมย่อยเล็กๆ ไว้ 4 โปรแกรม

  1. Bearing-Dist (2 pt) เมื่อกำหนดจุดค่าพิกัด 2 จุด สำหรับคำนวณหามุมอะซิมัทและระยะทาง
  2. Bearing-Dist(3 pt) เมื่อกำหนดจุดค่าพิกัด 3 จุด สำหรับคำนวณหาง่ามมุมราบ อะซิมัทและระยะทาง ในงานสำรวจก็ได้แก่การตั้งเป้าหลัง  (backsight)  จุดตั้งกล้อง (station) และเป้าหน้า (target)
  3. Coordinate 2D เมื่อกำหนดจุดค่าพิกัด 2 จุด กำหนดมุมราบและระยะราบ คำนวณหาค่าพิกัดจุดที่ 3 คำนวณหาพิกัดจุดที่ 3 การคำนวณคำนวณในระนาบสองมิติอย่างเดียว ไม่มีค่าระดับมาเกี่ยวข้อง
  4. Coordinate 3D เมื่อกำหนดจุดค่าพิกัด 2 จุด กำหนดมุมราบและมุมดิ่ง ระยะทางแบบ slope distance ต้องการคำนวณหาค่าพิกัดและค่าระดับจุดที่ 3

วิธีการใช้งานโปรแกรม

กดคีย์ “MENU” ที่เครื่องคิดเลขจะเห็นหน้าตาประมาณนี้ เลื่อนลูกศรไปที่ไอคอนของโปรแกรมดังรูป กดคีย์ “EXE”

Bearing-Dist (2 pt)

ที่เมนูกดคีย์ “1” เป็นการคำนวณหาค่ามุมอะซิมัทและระยะทางเมื่อกำหนดจุดค่าพิกัดให้สองจุด ลองทดสอบจากตัวอย่างดังรูป การประยุกต์ใช้งานส่วนใหญ่เป็นตอนที่ช่างสำรวจตั้งกล้องที่หมุดและส่องไปเป้าหลังหรือเป้าหน้าแล้ววัดระยะทางเพื่อตรวจสอบจากค่าพิกัด

ผลลัพธ์ก็ออกมาดังนี้

Bearing-Dist (3 pt)

ที่เมนูกดคีย์เลข “2” การประยุกต์ใช้งานส่วนใหญ่จะเป็นการตั้งกล้องส่องไปหมุดเป้าหลังแล้วป้อนค่าพิกัดเป้าหน้าเพื่อตรวจสอบมุมราบหรือไม่ก็จะเป็นการวางผังโดยการเปิดมุมราบและวัดระยะทางที่เป้าบน pole ลองดูตัวอย่างทดสอบ

จะได้ผลลัพธ์มาดังนี้ ครั้งแรกจะแสดงมุมอะซิมัทและระยะทางไปเป้าหลังก่อน

ถัดไปจะเป็นมุมราบ มุมอะซิมัทและระยะทางไปเป้าหน้า

Coordinate 2D

ที่เมนูกดคีย์เลข “3” เป็นการคำนวณหาค่าพิกัดเป้าหน้าเมื่อกำหนดค่าพิกัดจุดตั้งกล้องและเป้าหลัง กำหนดมุมราบและระยะทาง การคำนวณจะไม่มีค่าระดับมาเกี่ยวข้อง จึงเรียกว่า 2D หรือสองมิติ สำหรับโปรแกรมนี้ผมได้นำค่าสเกลแฟคเตอร์เข้ามาช่วยประยุกต์ใช้ด้วย ในกรณีที่ไม่ต้องใช้ก็ป้อนค่าสเกลแฟคเตอร์นี้ เป็น 1.0

สเกลแฟคเตอร์ตัวนี้แล้วจริงๆคือ Combine Scale Factor (CSF) ที่ได้จาก Elevation Scale Factor (ESF) x Grid Scale Factor (GSF) การประยุกต์ใช้สเกลแฟคเตอร์ส่วนใหญ่นำมาใช้โครงการที่ระบบพิกัดฉากกริดยูทีเอ็มในงานใหญ่ๆยาวๆ เช่นโครงการก่อสร้างถนน รถไฟ เพราะว่าแบบ drawing เราอยู่บนระนาบพิกัดฉาก ให้คิดเสียว่าแบบอยู่บนกระดาษขนาดใหญ่มาตราส่วน 1:1 แล้วเราวัดระยะทางบนผิวโลกที่มีความโค้ง ดังนั้นการวัดระยะทางจะต้องมีการทอนจากบนผิวโค้งเพื่อให้ลงมาเข้ากับระนาบพิกัดฉากของกระดาษ

มาลองทดสอบข้อมูล ป้อนข้อมูลค่าพิกัดเป้าหลัง ค่าพิกัดจุดต้องกลองดังนี้

จากนั้นป้อนมุมราบ และระยะทาง (Ground Distance ใช้ตัวย่อ Gnd dist) ในกรณีกล้องโททัล สเตชัน ไม่ได้ตั้งค่าสเกลแฟคเตอร์ไว้ที่ตัวกล้อง ระยะทางที่วัดออกมาจะเป็นระยะทางบนพื้นโลก ส่วนค่าสเกลแฟคเตอร์ในตัวอย่างผมใช้ 1.000480

 

โปรแกรมจะคำนวณมุมอะซิมัทและระยะทางไปเป้าหลังให้ดูก่อนเพื่อตรวจสอบ และไม่ลืมว่าค่าพิกัดที่เราป้อนเข้าไปในเครื่องคิดเลขคือค่าพิกัดในระบบพิกัดฉาก ระยะทางที่คำนวณออกมาคือระยะทางบนพิกัดฉาก (Grid Distance ใช้ตัวย่อ Grd Dist) และถ้าวัดระยะทางจริงๆควรจะได้เท่ากับ Ground Distance

ทวนกันนิด ระยะทางบนพิกัดฉาก(กริด)= ระยะทางบนพื้นโลก x สเกลแฟคเตอร์ 

สุดท้ายจะได้แสดงข้อมูลได้แก่มุมอะซิมัทไปเป้าหน้า ระยะทางบนพิกัดฉากและระยะทางบนพื้นโลก รวมทั้งค่าพิกัดเป้าหน้าที่ต้องการ

Coordinate 3D

ที่เมนูกดคีย์ “4” โปรแกรมคล้าย Coordinate 2D แต่จะมีมิติทางดิ่งเข้ามาเพิ่มดังนั้นที่จุดตั้งกล้องจะวัดความสูงของกล้อง (HI – Height of instrument) และที่เป้าหน้าก็จะต้องวัดความสูงมาด้วย (HT – Height of target) นอกจากนั้นจะมีมุมดิ่ง (Vertical angle) มาด้วย มาดูข้อมูลทดสอบกัน เริ่มจากป้อนค่าพิกัดเป้าหลัง ต่อมาป้อนค่าพิกัดจุดตั้งกล้อง ค่าระดับจุดตั้งกล้อง ความสูงกล้อง

ต่อไปป้อนมุมราบ(H.Ang) มุมดิ่ง(V.Ang) ระยะทาง (Slope distance) และความสูงเป้า(HT) และค่าสเกลแฟคเตอร์ (Scale Factor)

โปรแกรมจะคำนวณอะซิมัท ระยะทางจากจุดตั้งกล้องไปเป้าหลัง ข้อสังเกตผมใส่เครื่องหมายดาว (*) หน้าระยะทางบนพื้นโลก (Ground Distance)

กดคีย์ “EXE” จะได้ผลลัพธ์ อะซิมัท ระยะราบทั้งระยะบนพื้นโลกและระยะกริดจากจุดตั้งกล้องไปเป้าหน้า

สุดท้ายคือผลลัพธ์ที่ต้องการคือค่าพิกัดและค่าระดับของเป้าหน้า

สรุป

ก็พอหอมปากหอมคอสำหรับโปรแกรมพื้นฐานงานสำรวจชุดที่ 1 โดยมีสิ่งที่ช่างสำรวจจะต้องเข้าใจตั้งแต่เรื่องมุมอะซิมัทคือมุมอะไร สำคัญมากเพราะมุมนี้เป็นหัวใจขั้นพื้นฐานและจะสัมพันธ์กับระยะทางโดยที่แยกกันไม่ออกและสามารถนำไปคำนวณค่าพิกัดได้ สำหรับการคำนวณแบบนี้ โปรแกรมในกล้อง Total Station ปัจจุบันก็คำนวณให้อยู่แล้ว แล้วก็เก่งขึ้นเรื่อยๆ แต่ในทางกลับกัน สำหรับช่างสำรวจเอง คงไม่มีใครได้จับกล้องพวกนี้ได้ตลอดเวลา จำเป็นจะต้องมีเครื่องคิดเลขคู่ใจไว้ติดตัวตลอด สามารถหยิบมาใช้งานได้สะดวกและถ้ามีโปรแกรมที่จำเป็นสำหรับการทำงานติดอยู่ด้วย ชีวิตการทำงานก็พลอยลื่นไหล ติดตามตอนต่อไปครับ