Tag: Surveyor Pocket Tools

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 2 (กรณีศึกษาออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล)

ผมทิ้งช่วงเรื่องการออกแบบและประยุกต์ใช้เส้นโครงแผนที่ความเพี้ยนต่ำเป็นระยะเวลาเนิ่นนานพอสมควรเนื่องจากติดภารกิจไปทำงานต่างประเทศที่หาเวลาว่างนานๆได้ยาก ถ้าผู้อ่านไม่ได้ติดตามเรื่องนี้ตั้งแต่ต้นขอให้กลับไปอ่านหรือศึกษาได้ตามลิ๊งค์ตังต่อไปนี้

แนะนำการใช้เส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection)

และ

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 1

เรื่องเส้นโครงแผนที่ความเพี้ยนต่ำเป็นเรื่องใหม่สำหรับประเทศไทย แต่ในต่างประเทศบางประเทศได้ประยุกต์ใช้งานมานานแล้ว ประโยชน์ของเส้นโครงแผนที่ความเพี้ยนต่ำเมื่อประยุกต์ใช้แล้วคือ ความต่างระหว่าง Ground Distance และ Grid Distance จะน้อยมากจนสามารถละเลยไปได้ ไม่เหมือนกับการใช้แผนที่ระบบพิกัดยูทีเอ็ม (UTM) ที่ค่าระยะทางบนพื้นโลกกับระยะทางบนแผนที่ต่างกันมาก (ตัวอย่างระยะทางประมาณ 1 กม. สองระยะทางนี้อาจจะต่างกันประมาณ 40-80 ซม.แล้วแต่พื้นที่) แต่ข้อเสียคือจะต้องมีการกำหนดใช้เส้นโครงแผนที่ความเพี้ยนต่ำแบ่งเป็นพื้นที่หรือเป็นโซน ที่ค่าพิกัดศูนย์กำเนิดจะต่างกันไป อาจจะทำให้ช่างสำรวจหรือผู้ใช้งานสับสนได้ แต่ข้อเสียนี้สามารถลดลงได้ถ้ารัฐหรือหน่วยงานของรัฐได้กำหนดและประกาศใช้เป็นทางการ โดยที่มีเอกสารและไฟล์ projection สำหรับแปลงพิกัดจากระบบพิกัด UTM ไปยังระบบพิกัดที่ใช้ LDP ในแต่ละโซน ผู้ใช้งานสามารถนำค่าพารามิเตอร์นี้หรือนำไฟล์ projection (ตัวอย่างเช่นไฟล์ prj ของ Shape file) ไปแปลงพิกัดได้บนโปรแกรมด้าน GIS หรือนำไปตั้งค่าบนเครื่องมืออุปกรณ์เช่น GNSS RTK ที่สามารถแปลงพิกัดได้แบบ real time

ตัวอย่างการประยุกต์ใช้งาน

ผมขอยกตัวอย่างอีกครั้งเช่นรัฐโอเรกอนของอเมริกาที่มีการออกแบบ LDP และประกาศใช้กันมานานแล้วดังรูปด้านล่าง 

พื้นที่รัฐโอเรกอน ประมาณครึ่งหนึ่งของประเทศไทย (ประมาณ 255,000 ตร.กม.)

ออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล

ก็เป็นกรณีศึกษาก็แล้วกันนะครับ ผมจะออกแบบคร่าวๆให้พอมองเห็นภาพในภาพรวม ผมจะไล่ไปตามขั้นตอนที่ได้กล่าวไว้ในตอนที่ 1 และผมจะตั้งเป้าว่า ความเพี้ยน (Distortion) ไม่เกิน 20 ppm ก็มาดูกันว่าในพื้นที่ศึกษานี้ ค่าความเพี้ยนจะอยู่ในเกณฑ์นี้ไหม 20 ppm ก็คือระยะทางจริงๆบนพื้นโลก (Ground Distance)  1 กม. ระยะทางบนระนาบเส้นโครงแผนที่ LDP (Grid Distance) จะต่างกันไม่เกิน 20 มม. (20 มม. ต่อ 1 ล้านมิลมิเมตร หรือ 1 กม. นั่นเอง)

1.กำหนดพื้นที่ขอบเขตและหาค่าตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0)

สำหรับขอบเขตก็ตามหัวข้อคือประกอบไปด้วยจังหวัดกรุงเทพมหานคร สมุทรปราการ นนทบุรี และปทุมธานี ขนาดพื้นที่ประมาณ 85 กม.ในแนวเหนือใต้ และกว้างประมาณ 75 กม. ในแนวตะวันออกตะวันตก หรือกล่าวโดยย่อพื้นที่ 85 กม. x 75 กม.

ต่อไปจะหาค่าระดับที่เป็นตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0) ข้อมูลที่จะนำมาในการหาค่าเฉลี่ยจะใช้แผนที่ของกรมแผนที่ทหาร ปี 2553 ชื่อ “แผนที่แสดงค่าหมุดระดับในเขตกรุงเทพมหานครและปริมณฑล” เนื่องจากแผนที่ไม่สามารถหาแหล่งดาวน์โหลดทางการได้ จึงได้ดาวน์โหลดจากกระดานสนทนาจากเว็บไซต์ ที่ความคมชัดน้อย บางครั้งตัวเลขค่าระดับอาจจะแตกต่างค่าจริงไปบ้าง แต่ผมคิดว่าคงไม่ได้ทำให้การออกแบบ LDP กรณีศึกษานี้มีความด้อยลง  ผมนำแผนที่ชุดนี้มา ทำ rubber sheet เพื่อขึงพิกัดให้เข้ากับเส้นโครงแผนที่ UTM จากนั้นทำการ digitize จุดแต่ละจุดระดับลง ไม่ได้เอาทุกจุด แต่เลือกจุดประมาณ 10 กม.ต่อหนึ่งจุด ค่าระดับนี้เป็นค่าระดับน้ำทะเลปานกลาง (Orthometric Height) ซึ่งเราจะแปลงค่าระดับนี้ไปเป็นค่าระดับเหนือทรงรี (Ellipsoid Height) ในขั้นตอนต่อไป

จากนั้นทำการจัดเก็บจุดค่าระดับเป็นไฟล์ shape file กำหนดระบบพิกัดเป็นภูมิศาสตร์ (Geographic) เพื่อสะดวกต่อการใช้ค่าพิกัดนี้ในภายหลัง

นำไฟล์รูปที่ขึงแล้วและไฟล์จุดค่าระดับเข้าโปรแกรม QGIS ใช้ฟังก์ชั่น vector ทำการหา Basic Statistics for fields จำนวนจุดทั้งหมด 365 จุด ค่าระดับต่ำสุด 0.000 เมตร ค่าระดับสูงที่สุด  9.956 เมตร ค่าเฉลี่ย Mean 2.988 เมตร ผมจะนำค่าเฉลี่ยนี้ไปใช้งาน ค่านี้ขอใช้ตัวย่อเป็น H0 = 2.988 เมตร

ค่าระดับ H0 = 2.988 เมตร นี้จะนำมาแปลงเป็นความสูงเทียบกับทรงรี (h0) การประยุกต์ใช้ LDP ก็คือนำระนาบมาวางแตะค่าระดับนี้ โดยที่กำหนดโซนความกว้างทางราบ และช่วงค่าระดับความสูงที่ยังสามารถใช้ได้

ไดอะแกรมแสดงเส้นโครงแผนที่ความเพี้ยนต่ำที่ระนาบพิกัดฉากสัมผัสที่ความสูงเฉลี่ย h0

2.เลือกเส้นโครงแผนที่และกำหนด Central Meridian ที่จุดใกล้จุดศูนย์กลางพี้นที่

เส้นโครงแผนที่ที่นิยมนำมาทำ LDP มี 3 ประเภทคือ Transverse Mercator (TM), Lambert Conformal Conic (LCC 1SP) และ Oblique Mercator (OM) โดยที่แนวทางการเลือกถ้าพื้นที่ยาวไปในทิศทางตะวันออกตะวันตกเลือก LCC ถ้าพื้นที่ยาวไปในทิศทางเหนือใต้เลือก TM ถ้าพื้นที่เอียงไปในแนวทะแยงมุมกันทิศเหนือใต้และตะวันออกตะวันตกให้เลือก OM ในเคสนี้พื้นที่ยาวในทิศทางเหนือใต้ก็เลือกเป็น TM ที่เราคุ้นเคยกันดี

ต่อไปกำหนด Central Meridian (CM) ที่จุดกึ่งกลางของพื้นที่ (Centroid) ผมไปดาวน์โหลดไฟล์ shape file ที่รวมเอาเส้นขอบเขตของจังหวัดในประเทศไทย เมื่อโหลดมาแล้วเปิดใน QGIS จากนั้นทำการรวมพื้นที่ 4 จังหวัดนี้แบบ Dissolve เพื่อให้เหลือเส้น polygon เส้นเดียว แล้วจะนำไปหาจุดศูนย์กลางพี้นที่ โดยใช้ฟังก์ชั่นด้าน vector ของ Geometry tools เพื่อหา centroid ได้จุดมาดังรูปด้านล่าง

ได้ค่าพิกัดภูมิศาสตร์ของจุด Centroid ดังนี้ latitude: 13.852166 longitude: 100.629706 หน่วยเป็นดีกรี แปลงเป็นหน่วย DMS ได้ latitude: 31°51’7.8″N longitude: 100°37’46.94″E การวาง central meridian จะนิยมเลือกลิปดา (second) ที่