Category: Surveyor Pocket Tools

Update : โปรแกรม Surveyor Pocket Tools คำนวณความสูงจีออยด์ TGM2017

Update : โปรแกรม Surveyor Pocket Tools คำนวณความสูงจีออยด์ TGM2017

มาตามสัญญาที่ผมบอกว่าจะอัพเดท Surveyor Pocket Tools โปรแกรมช่างสำรวจฉบับกระเป๋า ให้สามารถใช้งานคำนวณความสูงจีออยด์ TGM2017 (Thailand Precise Geoid Model 2017) ดั้งเดิมสามารถคำนวณบนโมเดล EGM96 และ EGM2008

เปลี่ยนวีธีการคำนวณโดยใช้ไลบรารี Proj4

ดั้งเดิมตอนคำนวณหาความสูงจีออยด์บน EGM96 และ EGM2008 ผมพัฒนาโค้ดโปรแกรมมาจากการดัดแปลงของโค้ดดั้งเดิมภาษาซีของผู้พัฒนาท่านอื่นมาเป็นภาษาไพทอน ขณะนี้ได้ยกเลิกโค้ดชุดนี้หันมาใช้ไลบรารี Proj4 คำนวณให้ทั้งหมดเพราะสะดวกมาก และไลบรารี Proj4 สามารถจัดการเมมโมรีได้ดีกว่าของผมมาก สังเกตก่อนหน้านี้ถ้าใครเข้าไปดูใน Task Manager ของวินโดส์อาจจะตกใจที่โปรแกรม Surveyor Pocket Tools ของผมเขมือบเมมโมรีมหาศาล เพราะผมใช้วิธีอ่านไฟล์ของโมเดล EGM96 และ EGM2008 มาเก็บไว้ในเมมโมรีตอนเปิดโปรแกรม ถ้าใครใช้เครื่องคอมเก่าๆ อาจจะรำคาญตอนเปิดโปรแกรมเพราะรอนานมาก ขณะนี้ปัญหาเหล่านั้นได้หมดไป

ดาวน์โหลดและติดตั้ง

ตอนนี้ผมได้ปรับมาเป็นรุ่น 1.02 build 632 ก็ไปดาวน์โหลดกันได้ที่ลิ๊งค์นี้ มีทั้งสองเวอร์ชั่นให้เลือกคือ Windows 32 บิตและ Windows 64 บิต

Surveyor Pocket Tools V1.02 build 632

ตอนคำนวณความสูงจีออยด์ ไลบรารี Proj4 จะเปิดไฟล์โมเดลมาอ่านคำนวณหาความสูงจีออยด์ ซึ่งทำได้รวดเร็วมาก และโปรแกรม Surveyor Pocket Tools ในปัจจุบันก็กินเมมโมรีลงน้อยมาก ขณะเปิดโปรแกรมมายังไม่ได้คำนวณอะไรกินเมมโมรีประมาณ 95 MB ตอนคำนวณความสูงจีออยด์กินไปประมาณ 250 MB ก็ไม่มากมาย

โมเดล EGM96, EGM2008 และ TGM2017 ถ้าสังเกตุตอนติดตั้งโปรแกรมจะเห็นชื่อไฟล์คือ egm96_15.gtx, egm08_25.gtx และ tgm2017.gtx ไฟล์หลังสุดนี้ผมดัดแปลงจากไฟล์แอสกี้ของกรมแผนที่ทหารเป็นรูปแบบมาตรฐานของ NOAA ที่ไลบรารีต้องการ

ไฟล์โมเดลของจีออยด์หลังจากติดตั้งโปรแกรม

คำนวณความสูงจีออยด์

คลิกที่โปรแกรมย่อย “Geoid Height” จะเห็นไดอะล็อกหน้าตาดังรูปด้านล่าง ป้อนค่า latitude, longitude ไปดังรูป คลิกลูกศรเพื่อทำการคำนวณจะได้ความสูงจีออยด์

ทดสอบคำนวณความสูงจีออยด์จุดที่ 1

ลองปักหมุด Google Maps ดู

ปักหมุดบน Google Maps

มาทดสอบจุดที่ 2 กันต่อ ป้อน latitude, longitude เข้าไปดังนี้

ทดสอบคำนวณจุดที่ 2

สิ่งที่จะพัฒนาต่อไป

ตอนนี้คำนวณแบบแมนวลจุดต่อจุด อนาคตผมจะให้สามารถเปิดไฟล์มาคำนวณได้เพื่อความสะดวก ส่วนโปรแกรมย่อยอื่นที่ใช้คำนวณหาความสูงจีออยด์เช่น Point Scale Factor, Line Scale Factor ยังใช้จีออยด์ EGM2008 เป็นค่าปริยาย ผมจะออกแบบพัฒนาโปรแกรมให้ผู้ใช้สามารถเลือกโมเดลจีออยด์ได้ ติดตามกันต่อไปครับ

ทดสอบคำนวณหาความสูงจีออยด์ TGM2017 ด้วยไลบรารี Proj.4

ทดสอบคำนวณหาความสูงจีออยด์ TGM2017 ด้วยไลบรารี Proj.4

ไม่นานมานี้มีผมดาวน์โหลดไฟล์โปรแกรมและข้อมูลของ TGM2017 เรียกเต็มๆคือ Thailand Geoid Model 2017 ที่เป็นโครงการร่วมมือจากหลายๆฝ่ายของทางราชการ ผมยังไม่มีโอกาสได้นำไปใช้งาน โดยเฉพาะจะนำมาประยุกต์ใช้ในงานรังวัด GNSS ถือว่าเป็นสิ่งที่พวกเรารอคอยมานานที่จะได้มี local geoid model มาใช้งานกัน

โดยเฉพาะงานรังวัด GNSS เมื่อคำนวณแล้วจะได้ค่าพิกัดทางราบ และทางดิ่งจะได้ความสูง (h – Ellipsoid height) ที่เทียบกับทรงรี WGS84 ถ้าเรามีแบบจำลองความสูงจีออยด์สามารถคำนวณหาความสูง (H – Orthometric height) หรือระดับน้ำทะเลปานกลางได้ จากสูตร h = H + N โดยที่ไม่ต้องมีการเดินระดับไปหาจุดที่รังวัด GNSS แต่อย่างใด โดยที่โปรแกรมคำนวณหาค่าความสูงจีออยด์ (N – Geoid Height หรือ Geoid Separation) ที่ผมจะมาลองเขียนโปรแกรมเล็กๆเพื่อหาค่า N นี้ด้วยภาษาไพทอนในลำดับต่อไป

ในตอนนี้ผมจะใช้ไลบรารี Proj.4 เรียกไลบรารีในเวอร์ชั่นภาษาไพทอนนี้ว่า PyProj ตัวไลบรารี Proj.4 เองก็เพิ่งสนับสนุนการคำนวณ Vertical Datum ไปไม่นานนี้เอง สมมติว่าถ้าไม่ได้ใช้ไลบรารีตัวนี้เป็นตัวช่วยคงเป็นงานหนักหนาสาหัสเหมือนกัน

แปลงรูปแบบไฟล์ของแบบจำลองความสูงจีออยด์ TGM2017

ไฟล์แบบจำลองความสูงจีออยด์ TGM2017 ที่ผมดาวน์โหลดได้มานั้นเป็นแอสกี้ (Text file) ขนาดประมาณ 10.7 MB และมีโปรแกรมคำนวณมาด้วยชื่อไฟล์ execute คือ “TGM2017.EXE” สำหรับไฟล์แอสกี้ในคู่มือแสดงรายละเอียดดังนี้

  • ค่าละติจูด (Latitude) เริ่มต้น : 3 องศา
  • ค่าลองจิจูด (Longitude) เริ่มต้น : 95 องศา
  • ความละเอียดเชิงพื้นที่ : 1 ลิปดา
  • จานวนหลัก (Column) : 780 หลัก
  • จานวนแถว (Row) : 1200 แถว
TGM2017 layout

สำหรับไลบรารี PyProj นั้นถ้าต้องการคำนวณ Vertical Datum ต้องการไฟล์ในรูปแบบ gtx ที่กำหนดมาตรฐานโดย NOAA เพื่อให้การใช้งานมีประสิทธิภาพมาก ทางนี้แนะนำให้ใช้ไฟล์ไบนารีเพื่อประหยัดเมมโมรี สำหรับรูปแบบไฟล์ gtx นั้นไม่มีอะไรมาก กำหนดให้มีไฟล์ header เพื่อบอกจุดเริ่มต้นขอบเขตการใช้งาน ระยะห่างของละติจูดและลองจิจูดของแต่ละจุดในแนวตั้งและแนวนอน จำนวนแถวและจำนวนคอลัมน์ ที่เหลือจะเป็นความสูงจีออยด์ในแต่ละจุดมีขนาดเท่ากับ จำนวณแถวคูณจำนวนคอลัมน์ ตัวหัวไฟล์ผมสามารถเขียนได้ดังนี้

3.0 95.0 0.01666666666 0.01666666666 1200 780

อธิบาย : ละติจูดของมุมล่างซ้าย ลองจิจูดของมุมล่างซ้าย ระยะห่างของจุดในแนวละติจูด ระยะห่างของจุดในแนวลองจิจูด จำนวนแถว จำนวนคอลัมน์

ผมตรวจสอบไฟล์แอสกี้แล้วพบว่า ความสูงจีออยด์ถูกปูเรียงมาแล้วตามข้อกำหนดของ NOAA ดังนั้นผมจะอ่านไฟล์แอสกี้นี้แล้วแปลงเป็นไบนารี เพียงแต่เพิ่มส่วนหัวเข้าไป

ตัวอย่างโปรแกรมไพทอนสำหรับแปลงไฟล์แบบจำลองความสูงจีออยด์

ผมเขียนสคริปต์ภาษาไพทอน เผื่อมีใครสนใจ ผมตึ้งชื่อไฟล์ว่า “rtsd2gtx.py” โปรแกรมมีขนาดเล็กมากๆ ไม่กี่บรรทัด หลักการคืออ่านไฟล์แอสกี้ “tgm2017.asc” มาแล้วเขียนไฟล์ไบนารีในรูปแบบ gtx ข้อควรระวังคือไฟล์ไบนารี ต้องเป็นแบบ Big Endian ในโมดูล struct ผมจึงใส่เครื่องหมาย “>” ไปด้วย

ตัวอย่างเขียนขนิดข้อมูลเป็น double ใช้คำสั่ง f.write(struct.pack(“>d”, 3.0))
เขียนข้อมูลเป็น integer ใช้คำสั่ง f.write(struct.pack(“>i”, 1200))

<import struct
def readRTSDAsciiFile():
    geoid = []
    with open('tgm2017.asc', 'r') as f:
        geoid = [[float(n) for n in line.split()] for line in f] #2D list, one list contain one row.
    #TGM2017 was organized already from lowest row (min latitude) to highest row (max latitude).
    #No need to reverse.	
    return geoid

def writeGTXBinaryFile(geoid):
    with open('tgm2017.gtx', 'wb') as f:
        # pack with ">" for big endian.
		# write Header of file
        f.write(struct.pack(">d", 3.0))  #lower left Latitude
        f.write(struct.pack(">d", 95.0)) #lower left Longtitude		
        f.write(struct.pack(">d", 1.0/60.0)) #delta Latitude = 1 second
        f.write(struct.pack(">d", 1.0/60.0)) #delta Longitude = 1 second	
        f.write(struct.pack(">i", 1200)) #number of rows
        f.write(struct.pack(">i", 780))	#number of columns
		# write height values.
        for row in geoid:
            for c in row:
                f.write(struct.pack(">f", c))

# main program	
g = readRTSDAsciiFile()
writeGTXBinaryFile(g)

ณ ตอนนี้ผมสร้างโฟลเดอร์ เอาไฟล์ tgm2017.asc มาวางไว้ และมีโปรแกรมสคริปต์ “rtsd2gtx.py” อยู่ในโฟลเดอร์เดียวกัน

โฟลเดอร์ที่เก็บไฟล์

จากนั้นทำการรันโปรแกรมด้วยคำสั่งที่คอมมานด์ไลน์ python rtsd2gtx.py รอแป๊ปหนึ่งไฟล์ gtx ที่เก็บแบบจำลองความสูงจีออยด์จะถูกสร้าง และมีขนาดเล็กลงจากไฟล์แอสกี้ดั้งเดิมประมาณ 3 เท่า

ไฟล์ tgm2017.gtx ขนาดประมาณ 3.57 MB

ตัวอย่างโปรแกรมไพทอนสำหรับคำนวณหาความสูงจีออยด์

ต่อไปโปรแกรมไพทอนที่จะนำมาทดสอบคำนวณหาความสูงจีออยด์ ผมตั้งชื่อง่ายๆว่า “test.py” ถ้าจะลองรันโปรแกรมนี้เพื่อทดสอบต้องติดตั้งไลบรารี pyproj ให้เรียบร้อยก่อน

โค้ดโปรแกรมเริ่มต้นจากสร้าง projection ต้นทาง (ตัวแปร wgs84 egm) โดยที่กำหนด +geoidgrids=tgm2017.gtx และสร้าง projection ปลายทาง (ตัวแปร wgs84) โดยที่เว้นไม่ใส่แบบจำลองความสูงจีออยด์

import pyproj # Import the pyproj module
# Define source coordinate system with TGM2017.
wgs84egm = pyproj.Proj("+init=EPSG:4326 +geoidgrids=tgm2017.gtx") 
# Define target coordinate system without geoid model.
wgs84 = pyproj.Proj("+init=EPSG:4326")

lat, lon = 18.3353398540, 99.371215293000
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("1) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 7.75906518100, 98.303594340000
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("2) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 9.18558870000, 99.843706600000
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("3) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 6.96243169, 99.77398865
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("4) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 7.20852844, 99.72353542
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("5) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 7.35631365, 100.12797020
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("6) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 7.23806984, 100.55255020
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("7) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 7.09316728, 100.56368280
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("8) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 6.99643503, 100.43034140
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("9) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

lat, lon = 13.0+42.0/60+38.64/3600, 100+29.0/60+13.02/3600
x, y, z = pyproj.transform(wgs84egm, wgs84, lon, lat, 0.0)
print("10) Latitude = %.8f, Longitude = %.8f, Geoid Height = %.5f" % (y, x, z))

เมื่อจัดเก็บไฟล์เรียบร้อย ในตอนนี้ ถ้าดูที่โฟล์เดอร์จะเห็นไฟล์ดังนี้

จุดทดสอบ

ถ้าดูในโค้ดจะเห็นจุดทดสอบทั้งหมด 10 จุด โดยที่ 9 จุดแรกผมนำมาจากไฟล์ INPUT.DAT ที่ติดมากับโปรแกรม TGM2017.EXE ถ้าเปิดดูด้วย Notepad จะเห็นดังนี้

จุดทดสอบ

ส่วนจุดที่ 10 ได้มาจากสไลด์ ชื่อ BM11SP Latitude = 13° 42′ 38.64″ N Longitude = 100° 29′ 13.02″E

คำนวณ

จากนั้นทำการรันโปรแกรมบนคอมมานด์ไลน์ ใช้้คำสั่ง python test.py จะได้ผลลัพธ์ดังนี้

คำนวณหาความสูงจีออยด์

ผมนำผลลัพธ์มาเปรียบเทียบกับที่คำนวณด้วย TGM2017.EXE พบว่ามีความต่างกันเล็กน้อยที่หลักมิลลิเมตร สาเหตุน่าจะเกิดตอน interpolation โดยการนำจุดรอบๆจากแบบจำลองความสูงจีออยด์ ซึ่งโปรแกรมอาจจะเลือกใช้แบบ BiCubic หรือ BiLinear ผมไม่แน่ใจว่า Proj.4 ใช้แบบไหน ตอนนี้ยังไม่มีโอกาสไปดูโค้ดต้นฉบับ

เปรียบเทียบผลลัพธ์การคำนวณ

การพัฒนาโปรแกรมสำหรับการใช้งานในอนาคต

ผมวางแผนว่าจะนำแบบจำลองความสูงจีออยด์ TGM2017 ไปคำนวณในโปรแกรมรวมเครื่องมือฉบับกระเปาสำหรับช่างสำรวจ Surveyor Pocket Tools ได้แก่การคำนวณความสูงจีออยด์ การคำนวณหาสเกลแฟคเตอร์

สรุป

ขอขอบคุณคณะผู้จัดทำโครงการนี้ทุกๆท่าน สำหรับการจัดทำแบบจำลองความสูงจีออยด์ความละเอียดสูงสำหรับประเทศไทย อันจะเป็นประโยชน์เอนกอนันต์ต่อการประยุกต์ใช้ในแวดวงงานด้านสำรวจและด้านอื่นๆอีกมากในปัจจุบันและอนาคตอันใกล้นี้ ผมเองยังมีความหวังลึกๆว่าน่าจะมีการพัฒนาปรับปรุงให้แบบจำลองนี้ให้มึความถูกต้องมากๆยิ่งขึ้นในอนาคต

แก้ไขจอดับ: Surveyor Pocket Tools แสดงแผนที่บน Google Maps (สัจธรรมโลกนี้ไม่มีอะไรฟรี)

ตั้งแต่วันที่ 16 มิถุนายน 2018 ที่ผ่านมา ถ้าผู้ใช้ใช้งาน Surveyor Pocket Tools ลองปักหมุดผ่านโปรแกรมนี้ จะเห็นว่าจอดับแสดงข้อความว่า “For development purpose only” เพราะว่ากูเกิ้ลเปลี่ยนมาเก็บเงินผู้ใช้โดยเฉพาะผู้พัฒนาโปรแกรม โดยที่ผู้พัฒนาจะต้องขอ API Key จากทางกูเกิ้ลก่อน แล้วมาลงนามในบัญชีพร้อมจะเป็นหนี้กูเกิ้ล ถ้าใช้เกินกำหนด ผมมานั่งพิจารณาหลายเดือนว่าจะเอาไงดี โปรแกรมแจกให้ใช้ฟรีไม่มีเงื่อนไข แต่การที่ต้องไปจ่ายเงินให้กูเกิ้ลเพื่อการนี้ก็ดูกระไรๆ (ถึงแม้จะมีแบบ premium ให้องค์กรไม่หวังกำไรใช้ฟรี แต่ก็ยุ่งยากเกินไปสำหรับผม)

จอดับกรณีที่กูเกิ้ลเปลี่ยนนโยบาย Google Maps API

เอาละครับเมื่อคิดได้ปลงตก ก็มาดูว่ากูเกิ้ลเขาให้ใช้ฟรีได้เท่าไหร่เมื่อใช้แผนที่แบบ static สำหรับโปรแกรมบน PC Desktop ตอนแรกกูเกิ้ลให้ใช้ฟรีประมาณ 2500 ครั้งต่อวัน (นับตัวเลขที่มีการ request ไปที่ server ของกูเกิ้ล) ไม่นาน Wikipedia กับ Foursquare สองเจ้านี้ย้ายไปใช้แผนที่ตัวอื่น ทำให้กูเกิ้ลต้องลดราคาลง และเพิ่มจำนวนให้ใช้ฟรีเป็น 25000 ครั้งต่อวัน ผมดูแล้วโปรแกรม Surveyor Pocket Tools ที่ผู้ใช้วันๆหนึ่งแล้วปักหมุดคงไม่มากเท่านี้ ก็เลยมาลองดูสักตั้ง

เปลี่ยนวิธีการแสดงผล

เดิมผมใช้วิธีการสร้างไฟล์ html ที่เครื่องโลคอลคือสร้างไว้ที่เครื่องคอมพิวเตอร์ของผู้ใช้โปรแกรม เวลาผู้ใช้ปักหมุดแค่เรียกใช้ web browser เช่น chrome หรือ firefox ที่ติดตั้งอยู่ก่อนแล้ว เมื่อเปิดใช้ไฟล์ html ก็จะสามารถออนไลน์ดูแผนที่ที่ปักหมุดได้บน Google Maps แต่เมื่อมาจอดับ ผมไม่สามารถใช้วิธีการนี้ได้อีกต่อไป เพราะในไฟล์ html ผมต้องใส่คีย์ (API Key) ของผมลงไปด้วย เผื่อมีคนเปิดไฟล์นี้เอาคีย์ของผมไปใช้เกินอัตราก็บรรลัยจ่ายเงินกันอาน

ในการพัฒนาโปรแกรมนี้ผมใช้ PySide2 ดูว่ามีอะไรแสดงผลเว็บได้ ก็พอดีที่ QtWebEngineView ที่ใช้เอนจิน Chrome ตัวใหม่ เอาละก็ต้องมาแก้ไขโค้ดโปรแกรมกันใหม่ออกแรงกันนิด สุดท้ายผมไล่แก้ในโปรแกรมย่อยๆทุกตัว ตรงที่ปักหมุดจะแสดงผลแบบรูปด้านล่างทั้งหมด สามารถซูมเข้าออกได้ตามความต้องการ

แสดงผล Google Maps จากเอนจินเว็บของ PySide2
ชยายละเอียดในโหมด Map
ดูภาพถ่ายดาวเทียมในโหมด Satellite

ผมปรับโปรแกรมเป็นรุ่น 1.01 ผมอัพโหลดโปรแกรม Survey Pocket Tools รุ่น 1.01 ตัวใหม่ให้ดาวน์โหลดไปใช้ ไปที่หน้าดาวน์โหลดได้ตามลิ๊งค์นี้ (มีเฉพาะรุ่น 64 บิต ส่วน 32 บิตมีปัญหา build ไม่ผ่าน) ติดตามกันต่อไปครับ

Surveyor Pocket Tools version 1.01

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 2 (กรณีศึกษาออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล)

ผมทิ้งช่วงเรื่องการออกแบบและประยุกต์ใช้เส้นโครงแผนที่ความเพี้ยนต่ำเป็นระยะเวลาเนิ่นนานพอสมควรเนื่องจากติดภารกิจไปทำงานต่างประเทศที่หาเวลาว่างนานๆได้ยาก ถ้าผู้อ่านไม่ได้ติดตามเรื่องนี้ตั้งแต่ต้นขอให้กลับไปอ่านหรือศึกษาได้ตามลิ๊งค์ตังต่อไปนี้

แนะนำการใช้เส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection)

และ

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 1

เรื่องเส้นโครงแผนที่ความเพี้ยนต่ำเป็นเรื่องใหม่สำหรับประเทศไทย แต่ในต่างประเทศบางประเทศได้ประยุกต์ใช้งานมานานแล้ว ประโยชน์ของเส้นโครงแผนที่ความเพี้ยนต่ำเมื่อประยุกต์ใช้แล้วคือ ความต่างระหว่าง Ground Distance และ Grid Distance จะน้อยมากจนสามารถละเลยไปได้ ไม่เหมือนกับการใช้แผนที่ระบบพิกัดยูทีเอ็ม (UTM) ที่ค่าระยะทางบนพื้นโลกกับระยะทางบนแผนที่ต่างกันมาก (ตัวอย่างระยะทางประมาณ 1 กม. สองระยะทางนี้อาจจะต่างกันประมาณ 40-80 ซม.แล้วแต่พื้นที่) แต่ข้อเสียคือจะต้องมีการกำหนดใช้เส้นโครงแผนที่ความเพี้ยนต่ำแบ่งเป็นพื้นที่หรือเป็นโซน ที่ค่าพิกัดศูนย์กำเนิดจะต่างกันไป อาจจะทำให้ช่างสำรวจหรือผู้ใช้งานสับสนได้ แต่ข้อเสียนี้สามารถลดลงได้ถ้ารัฐหรือหน่วยงานของรัฐได้กำหนดและประกาศใช้เป็นทางการ โดยที่มีเอกสารและไฟล์ projection สำหรับแปลงพิกัดจากระบบพิกัด UTM ไปยังระบบพิกัดที่ใช้ LDP ในแต่ละโซน ผู้ใช้งานสามารถนำค่าพารามิเตอร์นี้หรือนำไฟล์ projection (ตัวอย่างเช่นไฟล์ prj ของ Shape file) ไปแปลงพิกัดได้บนโปรแกรมด้าน GIS หรือนำไปตั้งค่าบนเครื่องมืออุปกรณ์เช่น GNSS RTK ที่สามารถแปลงพิกัดได้แบบ real time

ตัวอย่างการประยุกต์ใช้งาน

ผมขอยกตัวอย่างอีกครั้งเช่นรัฐโอเรกอนของอเมริกาที่มีการออกแบบ LDP และประกาศใช้กันมานานแล้วดังรูปด้านล่าง 

พื้นที่รัฐโอเรกอน ประมาณครึ่งหนึ่งของประเทศไทย (ประมาณ 255,000 ตร.กม.)

ออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล

ก็เป็นกรณีศึกษาก็แล้วกันนะครับ ผมจะออกแบบคร่าวๆให้พอมองเห็นภาพในภาพรวม ผมจะไล่ไปตามขั้นตอนที่ได้กล่าวไว้ในตอนที่ 1 และผมจะตั้งเป้าว่า ความเพี้ยน (Distortion) ไม่เกิน 20 ppm ก็มาดูกันว่าในพื้นที่ศึกษานี้ ค่าความเพี้ยนจะอยู่ในเกณฑ์นี้ไหม 20 ppm ก็คือระยะทางจริงๆบนพื้นโลก (Ground Distance)  1 กม. ระยะทางบนระนาบเส้นโครงแผนที่ LDP (Grid Distance) จะต่างกันไม่เกิน 20 มม. (20 มม. ต่อ 1 ล้านมิลมิเมตร หรือ 1 กม. นั่นเอง)

1.กำหนดพื้นที่ขอบเขตและหาค่าตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0)

สำหรับขอบเขตก็ตามหัวข้อคือประกอบไปด้วยจังหวัดกรุงเทพมหานคร สมุทรปราการ นนทบุรี และปทุมธานี ขนาดพื้นที่ประมาณ 85 กม.ในแนวเหนือใต้ และกว้างประมาณ 75 กม. ในแนวตะวันออกตะวันตก หรือกล่าวโดยย่อพื้นที่ 85 กม. x 75 กม.

ต่อไปจะหาค่าระดับที่เป็นตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0) ข้อมูลที่จะนำมาในการหาค่าเฉลี่ยจะใช้แผนที่ของกรมแผนที่ทหาร ปี 2553 ชื่อ “แผนที่แสดงค่าหมุดระดับในเขตกรุงเทพมหานครและปริมณฑล” เนื่องจากแผนที่ไม่สามารถหาแหล่งดาวน์โหลดทางการได้ จึงได้ดาวน์โหลดจากกระดานสนทนาจากเว็บไซต์ ที่ความคมชัดน้อย บางครั้งตัวเลขค่าระดับอาจจะแตกต่างค่าจริงไปบ้าง แต่ผมคิดว่าคงไม่ได้ทำให้การออกแบบ LDP กรณีศึกษานี้มีความด้อยลง  ผมนำแผนที่ชุดนี้มา ทำ rubber sheet เพื่อขึงพิกัดให้เข้ากับเส้นโครงแผนที่ UTM จากนั้นทำการ digitize จุดแต่ละจุดระดับลง ไม่ได้เอาทุกจุด แต่เลือกจุดประมาณ 10 กม.ต่อหนึ่งจุด ค่าระดับนี้เป็นค่าระดับน้ำทะเลปานกลาง (Orthometric Height) ซึ่งเราจะแปลงค่าระดับนี้ไปเป็นค่าระดับเหนือทรงรี (Ellipsoid Height) ในขั้นตอนต่อไป

จากนั้นทำการจัดเก็บจุดค่าระดับเป็นไฟล์ shape file กำหนดระบบพิกัดเป็นภูมิศาสตร์ (Geographic) เพื่อสะดวกต่อการใช้ค่าพิกัดนี้ในภายหลัง

นำไฟล์รูปที่ขึงแล้วและไฟล์จุดค่าระดับเข้าโปรแกรม QGIS ใช้ฟังก์ชั่น vector ทำการหา Basic Statistics for fields จำนวนจุดทั้งหมด 365 จุด ค่าระดับต่ำสุด 0.000 เมตร ค่าระดับสูงที่สุด  9.956 เมตร ค่าเฉลี่ย Mean 2.988 เมตร ผมจะนำค่าเฉลี่ยนี้ไปใช้งาน ค่านี้ขอใช้ตัวย่อเป็น H0 = 2.988 เมตร

ค่าระดับ H0 = 2.988 เมตร นี้จะนำมาแปลงเป็นความสูงเทียบกับทรงรี (h0) การประยุกต์ใช้ LDP ก็คือนำระนาบมาวางแตะค่าระดับนี้ โดยที่กำหนดโซนความกว้างทางราบ และช่วงค่าระดับความสูงที่ยังสามารถใช้ได้

ไดอะแกรมแสดงเส้นโครงแผนที่ความเพี้ยนต่ำที่ระนาบพิกัดฉากสัมผัสที่ความสูงเฉลี่ย h0

2.เลือกเส้นโครงแผนที่และกำหนด Central Meridian ที่จุดใกล้จุดศูนย์กลางพี้นที่

เส้นโครงแผนที่ที่นิยมนำมาทำ LDP มี 3 ประเภทคือ Transverse Mercator (TM), Lambert Conformal Conic (LCC 1SP) และ Oblique Mercator (OM) โดยที่แนวทางการเลือกถ้าพื้นที่ยาวไปในทิศทางตะวันออกตะวันตกเลือก LCC ถ้าพื้นที่ยาวไปในทิศทางเหนือใต้เลือก TM ถ้าพื้นที่เอียงไปในแนวทะแยงมุมกันทิศเหนือใต้และตะวันออกตะวันตกให้เลือก OM ในเคสนี้พื้นที่ยาวในทิศทางเหนือใต้ก็เลือกเป็น TM ที่เราคุ้นเคยกันดี

ต่อไปกำหนด Central Meridian (CM) ที่จุดกึ่งกลางของพื้นที่ (Centroid) ผมไปดาวน์โหลดไฟล์ shape file ที่รวมเอาเส้นขอบเขตของจังหวัดในประเทศไทย เมื่อโหลดมาแล้วเปิดใน QGIS จากนั้นทำการรวมพื้นที่ 4 จังหวัดนี้แบบ Dissolve เพื่อให้เหลือเส้น polygon เส้นเดียว แล้วจะนำไปหาจุดศูนย์กลางพี้นที่ โดยใช้ฟังก์ชั่นด้าน vector ของ Geometry tools เพื่อหา centroid ได้จุดมาดังรูปด้านล่าง

ได้ค่าพิกัดภูมิศาสตร์ของจุด Centroid ดังนี้ latitude: 13.852166 longitude: 100.629706 หน่วยเป็นดีกรี แปลงเป็นหน่วย DMS ได้ latitude: 31°51’7.8″N longitude: 100°37’46.94″E การวาง central meridian จะนิยมเลือกลิปดา (second) ที่เป็นจำนวนเต็ม ผมเลือก ค่าเต็มๆคือ Latitude = 31°51′ และ  CM =  100°38′

3.คำนวณหาค่าสเกลแฟคเตอร์ k0 ที่แกน Central Meridian

ก่อนหน้านี้ในข้อ 1. ผมได้ค่าระดับน้ำทะเลปานกลางของพื้นที่เฉลี่ย (H0) 2.988 เมตร จะนำค่านี้ไปแปลงเป็นค่าระดับเทียบทรงรี (h0) เตือนกันนิดว่าทรงรีที่เราใช้เป็น WGS84 การหา k0 ไม่ได้ยากตามสูตรนี้

Formula 1: Calculate Axis Scale Factor

การหาค่า h0 ก็ไม่ได้ยุ่งยากอะไรในทูลส์ Surveyor Pocket Tools ก็มีโปรแกรม Geoid Height ให้ใช้งาน h0 = H0 + N  โดยที่ N คือ Geoid Separation แต่จะก่อนคำนวณทีละขั้นตอนแบบนี้แบบแมนวลผมจะขอเสนอวิธีที่สะดวกกว่านั้น ผมจะใช้ทูลส์ชือ Init Design LDP ที่อยู่ใน Surveyor Pocket Tools มาช่วย

 คำนวณหาค่า k0 ด้วย Init Design LDP

เปิดโปรแกรม Init Design LDP จะเห็นหน้าตาโปรแกรมดังรูปด้านล่าง

ป้อนข้อมูลค่าระดับเฉลี่ย H0 = 2.988 เมตร ป้อนค่า Latitude  of project center =  13°51′ และ  Longitude of project center (CM )=  100°38′ ที่ได้จากข้อ 2.

จากนั้นคลิกที่ไอคอนลูกศรชี้ลง (เลข 3) เพื่อทำการคำนวณจะได้ผลลัพธ์ดังนี้

โปรแกรมจะคำนวณหาค่า h0 ให้และนำค่านี้ไปแทนในสมการด้านบน สุดท้ายจะคำนวณหา k0 = 0.999996 (แนะนำให้ใช้ทศนิยม 6 ตำแหน่ง) ผมพยายามขยับ CM ไปทางตะวันออกและตะวันตกครั้ง 15″ แต่ค่า k0 ยังเกาะที่ค่า 0.999996 นี้ ผมเลยเลือก CM = 100°38′

4.ตรวจสอบความเพี้ยน (Distortion) ตลอดทั้งพื้นที่

เป็นขั้นตอนที่สำคัญมาก คือถ้าเราเลือก Central Meridian มาหลายๆอันจะต้องเอาค่า k0 มาคำนวณหา Distortion

ค่า k คือ grid scale factor ค่า k นี้เราสามารถหาได้จาก สูตรด้านล่าง (เครดิตจาก Map Projection – A Working Manual ของ John P. Snyder หน้า 61)

Formula 2: Calculate Grid Scale Factor

สูตรก็เป็นสูตรเดียวที่เราใช้หา grid scale factor สำหรับ UTM เพียงแต่ค่า k0 ที่เราใช้จะเป็นค่า k0 ที่ได้จากการคำนวณด้วยโปรแกรม “Init Design LDP” คือ k0 = 0.99996, แทนค่า λ0 ด้วย 1.756383004 เรเดียน (λ0 คือ Central Meridian = 100°38′)

เลือกจุดทดสอบ

ผมเลือกจุดมาทั้งหมด 10 จุด ตำแหน่งให้อยู่ขอบๆ เป็นที่ทราบกันดี ว่าถ้าเป็นเส้นโครงแผนที่ TM ตัว grid scale factor จะเปลี่ยนจากด้านตะวันออก-ตะวันตกเท่านั้น (ไม่มีผลกับเลื่อนไปทางเหนือ-ใต้)

เรากำหนด CM ค่อนข้างจะกลางของพื้นที่ ดังนั้นจะมาดูกันว่าด้านขอบนั้นมี distortion จะยังอยู่ในเกณฑ์ไหม

การตรวจสอบจุดหาความเพี้ยนจะอาศัยการคำนวณจากสูตรที่ผมลงมาให้ก่อนหน้านี้ ลองมา workshop กันดูสักนิด  เริ่มจากจุดที่ 1  แต่จุดต่อๆไปผมจะใช้ทูลส์อีกตัวในชุด Surveyor Pocket Tools มาช่วย

Point No 1 Lat (ɸ)= 13.5079570 Long (λ) = 100.8674784 H = 6.394

คำนวณหาความสูงเทียบกับทรงรี

ได้ค่าh = H + N แทนค่าในสูตร h = 6.394 -29.9632 = -23.5692 เมตร

คำนวณ RG

RGเป็นค่าที่ขึ้นอยู่กับ latitude และพารามิเตอร์ของทรงรี (Ellipsoid) WGS84 ดังนี้

a = 6378137, e = 0.08181919084262149, e’ = 0.08209443794969568

แทนค่า

ใช้สูตรที่ 1 (formula 1) ได้ค่า  RG= 6359074.928

คำนวณค่า k

ใช้สูตรที่ 2 (formula 2) คำนวณได้ค่า T = 0.057708361, C = 0.006371791, A = 0.003973557 สุดท้ายคำนวณหาค่า k = 1.000003945

คำนวณหาค่าความเพี้ยน (Distortion)

แทนค่า k, RG และค่า h ลงไป

จะได้ค่า 7.65 x 10-6 เขียนให้ง่ายคือ 7.65 ppm (7.65 มม. ต่อหนึ่งล้านมม. ซึ่งก็เท่ากับ 7.65 มม.ต่อ 1 กม.) สรุปได้ว่าที่จุดที่ 1

Point No 1 Lat (ɸ)= 13.5079570 Long (λ) = 100.8674784 H = 6.394

มีค่าความเพี้ยน (Distortion) = 7.65 ppm จะเห็นว่ายังไม่เกินค่า 20 ppm ที่ผมตั้ง tolerance ไว้

สร้างเส้นโครงแผนที่ความเพี้ยนต่ำ

มาลองสร้างเส้นโครงแผนที่ความเพี้ยนต่ำโดยอาศัยทูลส์ Create LDP มาช่วย ทูลส์ตัวนี้นอกจากจะสร้าง LDP ได้แล้วยังสามารถตรวจเช็คค่าความเพี้ยนได้ทันที พร้อมทั้งแปลงค่าพิกัดจาก latitude/longitude ไปยังค่าพิกัดใน LDP ได้ เปิดทูลส์ Surveyor Pocket Tools คลิก Create LDP

ตามรูปบนผมสร้างเส้นโครงแผนที่ความเพี้ยนต่ำ โดยอันดับแรกเลือก Projection ก็คือ Transverse Mercator กำหนดใช้ Latitude of origin = 13°51′ และ Central Meridian = 100°38′ ผมกำหนดค่า False Northing (FN) = 500000 และ False Easting (FE) = 200000 หน่วยเป็นเมตร รับรองว่าค่าพิกัดขอบของพื้นที่จะไม่มีค่าติดลบ (พื้นที่ 85 กม. x 75 กม. หรือ 85000 ม. x 75000 ม.) และที่สำคัญมากคือค่า Scale factor at grid origin (k0) = 0.999996 ที่คำนวณไว้ตั้งแต่ตอนแรกๆ ค่า FN และ FE ผมหลีกเลี่ยงเลือกค่าที่ใกล้เคียงกัน และพยายามจะไม่ให้ค่ามากจนไปใกล้เคียงกับ UTM อันจะก่อให้เกิดความสับสน

คำนวณหาค่าความเพี้ยนด้วยทูลส์ Create LDP

ลองป้อนพิกัดจุดที่ 1 เข้าไปในกรอบที่ 2 ดังรูป

ทำการคำนวณด้วยการคลิกไอคอนรูปลูกศรจะได้ผลลัพธ์

ค่าความเพี้ยน 7.65 ppm ตรงกับที่เราคำนวณด้วยมือ ผมใช้โปรแกรมช่วยคำนวณมาทั้ง 10 จุดได้ผลลัพธ์ดังนี้

จะเห็นว่าจุด ที่ 3 มีความเพี้ยน (distortion) อยู่ที่ 13.18 ppm เพราะอยู่ชายขอบด้านตะวันออกสุด และจุดที่ 9 ค่าความเพี้ยนมากถึง 17.27 ppm อยู่เกือบขอบด้านตะวันตก แต่ยังไงก็ไม่เกิน 20 ppm ตัวเลขที่ตั้งไว้ ส่วนที่ลองจิจูดใกล้เคียงกับ CM ได้แก่จุดที่ 4 จะเห็นค่าความเพี้ยนเล็กมาก ขนาด -0.6 ppm แค่นั้นเอง

5.กำหนดพารามิเตอร์เส้นโครงแผนที่ความเพี้ยนต่ำให้เรียบง่าย

จากที่คำนวณและออกแบบมาตั้งแต่ต้น สามารถกำหนดพารามิเตอร์เส้นโครงแผนที่นี้ให้เรียบง่ายและอ่านง่ายได้ดังนี้
Projection: Transverse Mercator
Latitude of grid origin: 13° 51’ 00” N
Longitude of central meridian: 100° 48’ 00” E
Northing at grid origin: 500,000 m
Easting at central meridian: 200,000 m
Scale factor on central meridian: 0.999996 (exact)

ค่าพารามิเตอร์นี้ต้องติดไว้ข้างแผนที่ที่ใช้เส้นโครงแผนที่ความเพี้ยนต่ำนี้เสมอ

6.กำหนดหน่วยระยะทางและพื้นหลักฐานให้ชัดเจน

Linear unit:  Meter

Ellipsoidal datum :  World Geodetic System 1984 (WGS84)

Vertical datum:  Mean Sea Level (MSL)

System:  Bangkok Metropolis Low Distortion Projection Coordinate System

Zone:  Bangkok Metropolis Area

หน่วยระยะทางและพื้นหลักฐานต้องติดไว้ข้างแผนที่ที่ใช้เส้นโครงแผนที่ความเพี้ยนต่ำนี้เสมอ

จัดเก็บเส้นโครงแผนที่ความเพี้ยนต่ำเข้าฐานข้อมูล

ทูลส์ Create LDP นอกจากสามารถคำนวณหาค่าความเพี้ยนและแปลงพิกัดได้แล้ว ยังสามารถจัดเก็บเส้นโครงแผนที่ที่เราออกแบบ เข้าไปเก็บในฐานข้อมูล เพื่อความสะดวกสามารถนำมาใช้ในภายหลังได้ เมื่อเปิดโปรแกรม Surveyor Pocket Tools

คลิกที่ LDP Database จะเห็นฐานข้อมูลของ LDP สำหรับเครื่องผมแล้วมีฐานข้อมูลเก็บเส้นโครงแผนที่ความเพี้ยนต่ำที่ผมนำมาศึกษาดังนี้

กลับมาที่ทูลส์ Create LDP ดั้งเดิมเรามีเส้นโครงแผนที่ความเพี้ยนต่ำที่กำหนดไว้ดังนี้ ต้องการจัดเก็บให้คลิกที่ไอคอน LDP โปรแกรมจะถามยืนยันว่าต้องการจัดเก็บหรือไม่

จากนั้นกลับมาดูที่ LDP Database คลิกที่ไอคอนลูกศรวนเพื่อ “Refresh” จะเห็นฐานข้อมูลอัพเดทดังนี้ ผมวงสีแดงเน้นให้ดูพารามิเตอร์ที่ป้อนไป

แปลงพิกัดด้วยทูลส์ Transform Coordinates

เมื่อจัดเก็บฐานข้อมูลเส้นโครงแผนที่ความเพี้ยนต่ำแล้ว ต้องการแปลงพิกัดระหว่าง UTM/Geographic ไปยังเส้นโครงแผนที่ความเพี้ยนต่ำก็สามารถทำได้ดังตัวอย่างต่อไปนี้ เริ่มจากเปิดโปรแกรม Transform Coordinates มาก่อน

จากตัวอย่างคำนวณค่าพิกัดยูทีเอ็ม N = 1,561,926.0937, E = 639,807.9239 Zone: 47N บนพื้นหลักฐาน WGS84 ไปยังพื้นหลักฐาน Bangkok Metropolis (LDP) จะได้ค่าพิกัด N = 530,441.5826, E = 163,493.4658

เครดิตสูตรที่นำมาใช้

เส้นโครงแผนที่ความเพี้ยนต่ำจริงๆแล้วก็คือเส้นโครงแผนที่ตัวหนึ่ง ไม่มีอะไรพิเศษพิศดาร เพียงแต่ยกระนาบขึ้นมาแตะทึ่ค่าระดับเฉลี่ย h0 จุดนี้เองที่พิเศษเพราะว่าจะได้ค่า k0 ตัวใหม่ที่ไม่ใช่ 0.9996 แบบยูทีเอ็ม ดังนั้นสูตรที่นำมาใช้เพื่อคำนวณเส้นโครงแผนที่ความเพี้ยนต่ำ ทั้งการหา Grid Scale Factor หรือแปลงพิกัด ก็ยังเป็นสูตรของ Transverse Mercator

ในโปรแกรม Surveyor Pocket Tools ผม implement สูตรการคำนวณจาก Map Projection – A Working Manual by John P. Snyder เป็นโค้ดภาษาไพทอนเฉพาะการคำนวณที่เกี่ยวข้องกับ LDP ส่วนการแปลงพิกัดข้ามพื้นหลักฐานอื่นๆยังใช้ไลบรารีจาก Proj4 ถ้าสนใจสูตรของ Transverse Mercator ให้ไปดูได้ที่หน้า 60-63 ของตำราเล่มนี้

ผมก็ยังยืนยันว่าถ้าสามารถประยุกต์ใช้งาน LDP ได้เป็นโซนๆ จะช่วยทำให้งานสำรวจ ออกแบบ ก่อสร้างและงานแผนที่ ทั้งงานในสำนักงานและงานในสนาม สามารถคลี่คลายไปได้ สามารถแก้ปัญหาเรื่องระยะทางที่เคยต่างในสองโลก ได้กลับมาใกล้เคียงกันมากจนยอมรับได้ แต่ต้องมีหน่วยงานที่มากำหนดมาตรฐานแบ่งโซนพื้นที่และออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำในแต่ละโซนได้เหมาะสมกับสภาพพื้นที่ ในกรณีนี้จะต่างกับค่าพิกัดลอยเพราะศูนย์กำเนิดลอยเป็นการตั้งขึ้นมาเองไม่มีมาตรฐาน ไม่สามารถแปลงพิกัดไปยังค่าพิกัดภูมิศาสตร์หรือยูทีเอ็มได้ 

เนื่องจากทิ้งท้ายบทความเรื่องออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ ตอนที่ 1 ไว้นานมาก จนมีผู้อ่านหลายท่านได้ทักท้วงมา ประกอบกับโปรแกรมทูลส์ที่ช่วยในการออกแบบก็เช่นกันพัฒนาไว้นานมาก แต่ไม่มีโอกาสได้นำเสนอวิธีการใช้งาน ก็ถือเป็นโอกาสอันดีได้นำเสนอวิธีการออกแบบเส้นโครงแผนที่ รวมถึงวิธีการใช้งานโปรแกรมด้วย พบกันตอนต่อไปครับ

 

คอมไพล์ Python Script เป็นไฟล์ Executable ด้วย PyInstaller

PyInstaller

คือเครื่องมือที่ช่วยการแปลงโปรแกรมที่เขียนด้วยไพทอนเป็น execute binary file  ที่สามารถนำไปรันได้โดยที่เครื่องคอมพิวเตอร์ปลายทางไม่ต้องติดตั้งไพทอน สำหรับ PyInstaller เป็น cross-platform สามารถใช้งานได้บนวินโดส์ แมค และลีนุกซ์ สนับสนุนไพทอนรุ่น 2.7 และ ไพทอน รุ่น 3.3 ถึง 3.6 จุดมุ่งหมายของ PyInstaller คือต้องการช่วยผู้ใช้ในการแปลงโปรแกรมไพทอน ที่ใช้โมดูลไลบรารีภายนอกเช่น Matplotlib, DJango, wxPython, PyQt เป็นต้น ให้สามารถทำได้ง่ายสะดวก

ติดตั้ง PyInstaller

ติดตั้งง่ายๆด้วยคำสั่ง pip ใน command prompt

pip install pyinstaller

ใช้งาน PyInstaller

การใช้งานสามารถใช้งานผ่าน command line ได้ แต่สำหรับโปรแกรมที่เรียกใช้โมดูลไลบรารีข้างนอกและต้องขนข้อมูล (data) ที่โมดูลไลบรารีนั้นๆต้องการใช้  ผมแนะนำให้ใช้ไฟล์สคริปท์ (Spec file) มาช่วยจะดีกว่า ปรับแต่งได้มากกว่า ตัว spec file จริงๆก็คือไฟล์สคริปท์ของไพทอนนั่นเอง กรณีที่ต้องใช้ Spec file อีกกรณีหนึ่งคือต้องการขนรันไทม์ไลบรารีเช่น .dll หรือ .so ไปแบบแมนวล กรณีที่ผมเจอคือผมใช้ PySide2 ที่รุ่นทางการจริงๆยังไม่ออกมา แต่ hook file ก็มีมาให้แล้วพร้อมกับ PyInstaller รุ่นใหม่ 3.3 แต่ผมใช้งานแล้วยังไม่สำเร็จ ดังนั้นจึงต้องใช้ Spec file นี้เป็นตัวช่วยในการขนรันไทม์ไลบรารีไป ส่วนเรื่อง hook file คืออะไรค่อยว่าอีกที

กรณีศึกษาด้วย Surveyor Pocket Tools บนวินโดส์

โปรแกรม Surveyor Pocket Tools พัฒนาด้วยไพทอน ปัจจุบันใช้ไพทอน รุ่น 3.6 ใช้โมดูลไลบรารีข้างนอกคือ openpyxl, pyproj, geographiclib, gmplot, simplekml, pyshp และที่ขาดไม่ได้คือ PySide2 ซึ่งสำหรับ openpyxl และ pyproj จะมีการขนข้อมูลไปด้วย ส่วน PySide2 ผมจะขนไฟล์ dll  ที่ต้องการด้วยมือล้วนๆ

Spec file ของ Surveyor Pocket Tools

มาดูไฟล์สคริปนี้ ผมตั้งชื่อว่า “setup.spec”

# -*- mode: python -*-
# -*- mode: python -*-
import sys
import PySide2
import os
block_cipher = None

dirname = os.path.dirname(PySide2.__file__)
plugins_path = os.path.join(dirname, 'plugins', '')

pyside2_plugins = [(plugins_path + 'iconengines/*', 'plugins/iconengines/'),
                  (plugins_path + 'imageformats/*', 'plugins/imageformats/'),
		  (plugins_path + 'platforms/*', 'plugins/platforms/'),
		  (plugins_path + 'printsupport/*', 'plugins/printsupport/'),
		  (plugins_path + 'sqldrivers/*', 'plugins/sqldrivers/')]

added_files = [('markers/*', 'markers/'),
               ('geoids/*', 'geoids/'),
	       ('database/*', 'database/'),
	       ('example data/*', 'example data/'),
	       ('qt.conf', ''), 
	       ('*.xml', '')]

a = Analysis(['main.py'],
             pathex=['D:\\sourcecodes\\python\\surveyor pocket tools'],
             binaries=None,
             datas=added_files + pyside2_plugins,
             hiddenimports=[],
             hookspath=[],
             runtime_hooks=[],
             excludes=[],
             win_no_prefer_redirects=False,
             win_private_assemblies=False,
             cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
             cipher=block_cipher)
exe = EXE(pyz,
          a.scripts,
          exclude_binaries=True,
          name='surveyor pocket tools',
		  icon='Land Surveying-64.ico',
          debug=False,
          strip=False,
          upx=False,
          console=False )
coll = COLLECT(exe,
               a.binaries,
               a.zipfiles,
               a.datas,
               strip=False,
               upx=True,
               name='setup')

ลองมาดูโค้ดกัน เริ่มจาก import PySide2 เข้ามาเพื่อจะตรวจสอบว่า PySide2 ที่เราใช้งานเป็น 32 บิตหรือ 64 บิต เพื่อจะได้ขน .dll ไปถูกรุ่น จากนั้นเก็บไดเรคทอรีของ PySide2 เข้าเก็บใน dirname ผ่านฟังก์ชัน os.path.dirname() ที่นี้เราทราบว่าในไดเรคทอรีของ PySide2 จะมีไดเรคทอรีย่อยชื่อ “plugins” อยู่ ทำการเก็บไดเรคทอรีนี้ด้วยฟังก์ชั่น os.path.join() ไปเก็บไว้ในตัวแปร plugins_path

# -*- mode: python -*-
import sys
import PySide2
import os
block_cipher = None

dirname = os.path.dirname(PySide2.__file__)
plugins_path = os.path.join(dirname, 'plugins', '')

ต่อไปคือตัวแปร pyside2_plugins จะเป็นลิสต์เก็บ tuple โดยสมาชิกตัวแรกจะเก็บชื่อไฟล์ไดเรคทอรีต้นทาง ใช้เครื่องหมาย * เพราะต้องการทุกๆไฟล์ในไดเรคทอรีนี้ สมาชิกตัวที่สอง จะเก็บชื่อไดเรคทอรีปลายทางที่ต้องการไฟล์เหล่านี้ไปอยู่


pyside2_plugins = [(plugins_path + 'iconengines/*', 'plugins/iconengines/'),
                   (plugins_path + 'imageformats/*', 'plugins/imageformats/'),
		   (plugins_path + 'platforms/*', 'plugins/platforms/'),
		   (plugins_path + 'printsupport/*', 'plugins/printsupport/'),
		   (plugins_path + 'sqldrivers/*', 'plugins/sqldrivers/')]

ลองมาดูว่าไดเรคทอรี “plugins” ผมไฮไลท์ไว้เฉพาะไดเรคทอรีที่โปรแกรม Surveyor Pocket Tools ต้องการ

ต่อไปจะขนไฟล์ที่โปรแกรม Surveyor Pocket Tools ต้องการใช้ ให้ใส่ไว้ที่ตัวแปร added_files โครงสร้างเป็น tuple เหมือนกัน และขนไฟล์ชื่อ qt.conf ที่ PySide2 ต้องการไปด้วย

added_files = [('markers/*', 'markers/'),
               ('geoids/*', 'geoids/'),
	       ('database/*', 'database/'),
	       ('example data/*', 'example data/'),
	       ('qt.conf', ''), 
	       ('*.xml', '')]

มาดูไดเรคทอรีที่โปรแกรมต้องการดังนี้

ต่อไปมาดูโค้ดส่วนที่สำคัญมาก ‘main.py’ คือไฟล์สคริปท์หลักของโปรแกรม Surveyor Pocket Tools ต่อไปคือ pathex เป็นไดเรคทอรีของไฟล์ไพทอนสคริปท์ และ datas ที่ผมจัดการรวม added_files และ pyside2_plugins เข้าด้วยกัน สุดท้าย hookspath คือไดเรคทอรีที่เก็บไฟล์ hook ไว้ สำหรับไฟล์ hook นี้ PyInstaller จะอ่านสคริปท์นี้ทีละไฟล์มาตัดสินใจว่าจะขนข้อมูลไดเรคทอรีไหนไป ผมเลือกใช้ดีฟอลท์ครับคือปล่อยว่าง

a = Analysis(['main.py'],
             pathex=['D:\\sourcecodes\\python\\surveyor pocket tools'],
             binaries=None,
             datas=added_files + pyside2_plugins,
             hiddenimports=[],
             hookspath=[],
             runtime_hooks=[],
             excludes=[],
             win_no_prefer_redirects=False,
             win_private_assemblies=False,
             cipher=block_cipher)

สำหรับไดเรอทอรี hooks ที่เป็นดีฟอลท์มากับ PyInstaller ผมใช้ไฟล์เพียงสองไฟล์เท่านั้น ตามที่ไฮไลท์ไว้

ใช้ PyInstaller คอมไพล์ไฟล์ setup.spec

ผมใช้ Minoconda เมื่อจะคอมไพล์ก็เรียก command prompt มาดังนี้ ใช้คำสั่ง cd เข้ามาที่พาทของสคริปท์ของไพทอน ใช้คำสั่ง dir ดูไฟล์ setup.spec

ต่อไปทำการคอมไพล์ ด้วยคำสั่ง

pyinstaller setup.spec

ผลลัพธ์ของ PyInstaller

เมื่อคอมไพล์เสร็จแล้ว ไม่มี error จะได้ไดเรคทอรีมาสองคือ “build” และ “dist” เมื่อเข้าไปดูใน “dist” จะเห็นไดเรคทอรีย่อยช “setup” ชื่อไดเรคทอรีนี้ PyInstaller จะสร้างตามชื่อหน้าของไฟล์ setup.spec เมื่อเข้าดูที่ไดเรคทอรี “setup” จะเห็นไฟล์ต่างๆที่โปรแกรมต้องการ

ผมลองดับเบิ้ลคลิกไฟล์ “surveyor pocket tools.exe” ก็สามารถเปิดมาและทำงานได้ตามปกติ ลองดูชื่อไดเรคทอรีจะเห็นสองไดเรคทอรี ที่ได้จากไฟล์ hooks คือ openpyxl และ pyproj ลองเข้าไปดูในไดเรคทอรี จะเห็นข้อมูลที่ pyproj ขนไปใช้ หมายเหตุว่าข้อมูลนี้ pyproj จะนำไปเป็นฐานข้อมูลในการแปลงพิกัดตาม datum และ projection

ทำไฟล์ Setup ด้วย Inno Setup

จากนั้นผมจะ copy ไดเรคทอรีที่อยู่ใน “setup” ไปไว้อีกที่หนึ่ง พื้นที่นี้สำหรับใช้ Inno Setup มาทำไฟล์ติดตั้ง ลองดูไดเรคทอรี

ในไดเรคทอรีนี้ผมจะมีไฟล์ “surveyorpockettools64.iss” เป็นไฟล์สคริปท์ของ Inno Setup เพื่อสร้างไฟล์ติดตั้ง setup สำหรับวินโดส์ 64 บิต

#define MyAppName "Surveyor Pocket Tools"
#define MyAppEXE "Surveyor Pocket Tools.exe"
#define MyShortAppName "SurveyorPocketTools"
#define MyMainRoot "Survey Suite"
#define Developer "Prajuab Riabroy"
#define Version "0.98"
#define Build "573"

[Setup]
AppName={#MyAppName}
AppVerName={#MyAppName} V{#Version}
DefaultDirName={pf}\{#MyMainRoot}\{#MyAppName}
DefaultGroupName={#MyMainRoot}\{#MyAppName}
UseSetupLdr=yes
UninstallDisplayIcon={app}\{#MyAppEXE}
VersionInfoProductName={#MyAppName}
VersionInfoCompany=priabroy
VersionInfoCopyright=Copyright 2000-2017 by {#Developer}
VersionInfoDescription={#MyAppName}
VersionInfoProductVersion={#Version}
VersionInfoVersion={#Version}
OutputDir=Setup
OutputBaseFilename={#MyShortAppName}V{#Version}Build{#Build}Setup64
;OutputDir=TraverseProV250Setup64
; "ArchitecturesAllowed=x64" specifies that Setup cannot run on
; anything but x64.
ArchitecturesAllowed=x64
; "ArchitecturesInstallIn64BitMode=x64" requests that the install be
; done in "64-bit mode" on x64, meaning it should use the native
; 64-bit Program Files directory and the 64-bit view of the registry.
;ArchitecturesInstallIn64BitMode=x64
ArchitecturesInstallIn64BitMode=x64
AppPublisher={#Developer}
AppPublisherURL=https://www.surveyorpockettools.org
AppVersion={#Version}.{#Build}
LicenseFile = eula.txt
ChangesEnvironment=yes
SolidCompression=yes
Compression=lzma2/ultra64
LZMAUseSeparateProcess=yes
LZMADictionarySize=1048576
LZMANumFastBytes=273

[Files]
Source: "{#MyAppName}.exe"; DestDir: "{app}"
Source: "base_library.zip"; DestDir: "{app}" ;
Source: "plugins\*"; DestDir: "{app}\plugins\"; Flags: ignoreversion recursesubdirs
Source: "database\*"; DestDir: "{userappdata}\{#MyAppName}\database\";
Source: "geoids\*"; DestDir: "{userappdata}\{#MyAppName}\geoids\";
Source: "markers\*"; DestDir: "{userappdata}\{#MyAppName}\markers\";
Source: "example data\*"; DestDir:"{userappdata}\{#MyAppName}\example data\";
Source: "pyproj\data\*"; DestDir: "{app}\pyproj\data\";
Source: "openpyxl\*"; DestDir: "{app}\openpyxl\";
;Source: "requests\*"; DestDir: "{app}\requests\";
Source: "*.html"; DestDir: "{userappdata}\{#MyAppName}\";
Source: "*.dll"; DestDir: "{app}"
Source: "*.pyd"; DestDir: "{app}"
Source: "*.xml"; DestDir: "{userappdata}\{#MyAppName}\";
Source: "qt.conf"; DestDir: "{app}"

[Icons]
;create icon at start menu group
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExe}"
;create icon at desktop
Name: "{commondesktop}\{#MyAppName}"; FileName:"{app}\{#MyAppExe}"

[Registry]
; Start "Software\My Company\My Program" keys under HKEY_CURRENT_USER
; and HKEY_LOCAL_MACHINE. The flags tell it to always delete the
; "My Program" keys upon uninstall, and delete the "My Company" keys
; if there is nothing left in them.
Root: HKCU; Subkey: "Software\{#MyMainRoot}"; Flags: uninsdeletekeyifempty
Root: HKCU; Subkey: "Software\{#MyMainRoot}\{#MyAppName}"; Flags: uninsdeletekey
Root: HKLM; Subkey: "Software\{#MyMainRoot}"; Flags: uninsdeletekeyifempty
Root: HKLM; Subkey: "Software\{#MyMainRoot}\{#MyAppName}"; Flags: uninsdeletekey
Root: HKLM; Subkey: "Software\{#MyMainRoot}\{#MyAppName}\Settings"; ValueType: string; ValueName: "InstalledPath"; ValueData: "{app}"
Root: HKLM; Subkey: "Software\{#MyMainRoot}\{#MyAppName}\Settings"; ValueType: string; ValueName: "DevelopedBy"; ValueData: "{#Developer}"
Root: HKLM; Subkey: "Software\{#MyMainRoot}\{#MyAppName}\Settings"; ValueType: string; ValueName: "ApplicationName"; ValueData: "{#MyAppName}"
;Root: HKCU; Subkey: "Environment"; ValueType:string; ValueName:"PROJ_LIB"; ValueData:"{userappdata}\{#MyAppName}\geoidgrids\" ; Flags: preservestringtype ;

ถ้าเป็นไฟล์สำหรับ Surveyor Pocket Tools รุ่น 32 บิตเพียงใส่คอมเมนต์หน้า ;ArchitecturesInstallIn64BitMode=x64 ก็พอ สำหรับรายละเอียดสคริปท์ของ Inno Setup ผมจะไม่กล่าวถึงรายละเอียดในที่นี้ผู้อ่านที่สนใจสามารถศึกษาได้ครับ จากนั้นก็ใช้ Inno Setup ทำการ build ก็จะได้ไฟล์ Exe เดี่ยวๆ ที่สามารถ zip ไปให้ผู้ใช้ได้ download ต่อไป พบกันตอนหน้าครับ

การตั้งค่า (Settings) ของ Surveyor Pocket Tools

Surveyor Pocket Tools ออกมาตั้งนานแล้วเพิ่งจะเปิดโอกาสให้ผู้ใช้ได้ตั้งค่าต่างๆเช่นจำนวนทศนิยมของค่าพิกัด จำนวนทศนิยมของระยะทาง ความสูง หรือแม้แต่ของมุม เมื่อเปิดโปรแกรม Surveyor Pocket Tools จะเห็นมีไอคอน Settings รูปเกียร์เพิ่มดังรูป

python_2017-07-15_09-19-59

เมื่อดับเบิ้ลคลิกเข้าไปจะเห็นไดอะล็อก

python_2017-07-15_09-24-21

จะมีแท็บ Unit, Linear Precision, Angular Precision, Google Maps และ Google Earth เรียงรายกันตามลำดับ เริ่มต้นที่ Unit ออกแบบเพื่ออนาคตสำหรับหน่วยอื่นที่ไม่ใช่หน่วย metric แต่ตอนนี้สนับสนุนหน่วยเมตริกอย่างเดียวครับ

Linear Precision

มาดูที่ Linear Precision คือตั้งความละเอียดหรือจำนวนทศนิยมให้กับหน่วยที่เป็นเชิงเส้นทั้งหลายเช่นระยะทาง ความสูง พื้นที่หรือแม้กระทั่งจำนวนทศนิยมค่าพิกัดของระบบพิกัดฉาก และจำนวนทศนิยมของสเกลแฟคเตอร์

python_2017-07-15_10-47-21

ลองคำนวณการแปลงพิกัดด้วยทูลส์ Transform Coordinates ตรวจสอบจำนวนทศนิยม

python_2017-07-15_10-45-24

Angular Precision

สำหรับ Angular Precision ตั้งความละเอียดหรือจำนวนทศนิยมของมุมทั้งหลายเช่นค่าพิกัดในระบบภูมิศาสตร์หรือมุม convergence ดังรูปด้านล่าง

python_2017-07-15_11-19-19

การใช้งานลองดู UTM-Geo Converter 

python_2017-07-15_11-22-39

python_2017-07-15_11-25-01

ตั้งค่าสำหรับ Google Maps

ตั้งค่าสำหรับปักหมุดบน Google Maps ได้แก่รูปแบบของหมุด สี ดังรูปด้านล่าง

python_2017-07-15_11-27-06

ตัวอย่างการใช้งานโดยใช้ทูลส์ Geodesic Distance 

python_2017-07-15_11-36-42

ลองปักหมุดจะเห็นรูปแบบหมุด สี และสีของเส้นที่เราตั้งค่าไว้ดังรูปด้านล่าง

firefox_2017-07-15_11-36-59

ตัวอย่างการใช้งานคำนวณหาพื้นที่ Compute Area 

python_2017-07-15_14-26-57

ปักหมุดพื้นที่ลงไป

firefox_2017-07-15_14-32-18

บางสถานการณ์ไม่ต้องการรูปหมุด ต้องการแค่วงรอบพื้นที่ ตั้งคาใหม่ด้วยการไม่ติ๊กที่ Draw Pin ดังรูปด้านลาง

python_2017-07-15_14-33-21

จะได้ผลลัพธ์บน Google Maps ดังนี้

firefox_2017-07-15_14-36-03

การตั้งค่าสำหรับ Google Earth

คล้ายๆ ตั้งค่าให้ Google Maps ที่ผ่านมา ดูรูปด้านล่าง

python_2017-07-15_14-40-42

ตัวอย่างการใช้งานขอใช้ทูลส์ Line Scale Factor 

python_2017-07-15_14-43-03

ปักหมุดลง Google Earth ป้อนชื่อไฟล์ก่อนแล้วจะสวิชท์เข้า Google Earth

googleearth_2017-07-15_14-47-59

การตั้งค่า (settings) จะเก็บไว้ที่ไฟล์ settings.xml ไฟล์นี้อยู่ที่โฟลเดอร์ “Appdata” ถ้าเป็นเครื่องผมเมื่อเปิดด้วยไอคอน “Example Data”

explorer_2017-07-15_14-52-19

ความจริงในงานสำรวจต้องการค่าพิกัดฉากที่ทศนิยมหลักที่ 3 ซึ่งเป็นหลักมิลลิเมตรและเพียงพอ ส่วนค่าพิกัดภูมิศาสตร์เช่นแล็ตติจูดและลองจิจูดจะละเอียดเทียบเท่าระดับมิลลิเมตร ต้องการทศนิยมมากกว่าตำแหน่งที่ 5 ขึ้นไปเช่น 23°48’23.78768″N อย่างไรก็ตาม Surveyor Pocket Tools เปิดโอกาสให้ตั้งได้ตามความต้องการของผู้ใช้ พบใหม่ในตอนต่อไปครับ

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 1

ในตอนที่แล้วได้เกริ่นไปเรื่องเส้นโครงแผนที่ความเพี้ยนต่ำ ที่จะออกแบบประยุกต์มาใช้งานเพื่อให้ผู้ที่ออกแบบโครงการก่อสร้างบนระนาบพิกัดฉากตัวนี้สามารถทำได้ง่าย ไม่ต้องกังวลกับเรื่อง scale factor คือแบบที่ออกแบบบนระบบพิกัดฉากยาวเท่าไหร่เมื่อก่อสร้างแล้วไปวัดในสนามต้องได้เกือบเท่ากัน (แต่ต่างก้นน้อยมากๆ) และที่สำคัญที่สุดคือช่วงก่อสร้าง ช่างสำรวจสามารถวางผัง (Setting out หรือ Layout) โดยที่ไม่ต้องใช้สเกลแฟคเตอร์เข้ามาเกี่ยวข้อง เพราะสเกลแฟคเตอร์ที่ได้จากเส้นโครงแผนที่ความเพี้ยนต่ำจะมีค่าใกล้กับ 1.0 มากๆ จนสามารถละเลยไปได้

เครื่องมือช่วยในการออกแบบเส้นโครงแผนที่ต่ำ

ผมเขียนทูลส์ตัวเล็กๆไว้ชื่อ “Init Design LDP” อยู่ในชุด “Surveyor Pocket Tools” เหมือนเดิม ทูลส์ตัวนี้ตามชื่อครับ “Init Design” คือเป็นตัวช่วยในเบื้องต้น เพราะการออกแบบเส้นโครงแผนที่ต่ำ ต้องมีการลองผิดลองถูก (กลั่นและปรุงเพื่อให้ได้รสชาติที่ดีที่สุด) เพื่อเส้นโครงที่มีความเพี้ยนต่ำที่สุด ซึ่งจะให้ค่าสเกลแฟคเตอร์ที่ใกล้เคียงค่า 1.0 มากที่สุด แต่จะให้ใกล้เคียงค่า 1.0 แค่ไหนก็มีตัวแปรหลายตัวที่จะจำกัดความเป็นไปได้นี้

ทูลส์ตัวที่สองคือ “Create LDP” อยู่ในชุด “Surveyor Pocket Tools” เช่นเดียวกัน หลังจากได้เลือกเส้นโครงแผนที่สำหรับ LDP ได้แล้ว กำหนดจุดศูนย์กลางสำหรับ Central Meridian และสุดท้ายคำนวณค่า k0 ทูลส์ตัวนี้จะมาช่วยในการคำนวณหาค่าความเพี้ยน ตลอดจนทำการจัดเก็บค่าพารามิเตอร์เส้นโครงแผนที่ความเพี้ยนต่ำไว้ในฐานข้อมูล (LDP Database) หรือจะเรียกว่าตัวช่วยในการสร้างเส้นโครงแผนที่ก็พอได้

6 ขั้นตอนในการออกแบบ

1.กำหนดพื้นที่ขอบเขตและหาค่าตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0)

กำหนดพื้นที่ขอบเขตของพื้นที่หรือบริเวณที่ต้องการใช้เส้นโครงแผนที่ความเพี้ยนต่ำหรือ LDP ส่วนใหญ่แล้วจะกำหนดให้เป็นสี่เหลี่ยมผืนผ้าคลุมพื้นที่ที่ต้องการใช้งาน เมื่อได้พื้นที่มาคร่าวๆแล้ว ต่อไปจะเลือกค่าความสูงเมื่อเทียบกับทรงรีเฉลี่ยของพื้นที่ (Average ellipsoidal height) ใช้สัญลักษณ์ h0 ย้ำอีกทีครับความสูงนี้ไม่ใช่ความสูงเที่ยบกับระดับน้ำทะเลปานกลาง (Orthometric height)  ถ้าพื้นที่มีค่าระดับเฉลี่ยไม่ต่างกันนักค่าความเพี้ยนจะมีค่าไม่มากนัก แต่ถ้าพื้นที่เป็นที่ราบติดภูเขาสูงแล้วต้องการ LDP  คลุมพื้นที่นี้ ในกรณีนี้จะได้ค่าความเพี้ยนที่สูงซึ่งไม่ดีนัก สำหรับ accuracy ความสูงทรงรีแต่ละจุดในพื้นที่ที่จะนำมาหาค่าเฉลี่ย ไม่จำเป็นต้องละเอียดมากแค่ ±6 เมตรก็เพียงพอ

ldp-h0
ไดอะแกรมแสดงเส้นโครงแผนที่ความเพี้ยนต่ำที่ระนาบพิกัดฉากสัมผัสที่ความสูงเฉลี่ยน h0

2.เลือกเส้นโครงแผนที่และกำหนด Central Meridian ที่จุดใกล้จุดศูนย์กลางพี้นที่

การเลือกเส้นโครงแผนที่ก็เลือกตามลักษณะของพื้นที่ ถ้าพื้นที่ยาวจากเหนือลงมาใต้ก็จะเลือกเส้นโครงแผนที่ Transverse Mercator (TM) ถ้าพื้นที่ยาวจากตะวันออกไปตะวันตกเลือกเส้นโครงแผนที่ Lambert Conformal Conic (LCC) หรือว่าถ้าพื้นที่เฉียงๆทะแยงๆก็เลือกเส้นโครงแผนที่ Oblique Mercator (OM) เมื่อเลือกเส้นโครงแผนที่ได้แล้ว ต่อไปคือหาจุดศูนยืกลางพื้นที่ (centroid) เพื่อวาง Central Meridian (CM) สำหรับเส้นโครงแผนที่ TM และ LCC ส่วนพื้นที่ที่ทะแยงจะวางเส้นโครงแผนที่ OM ก็เลือกสองจุดที่อยู่กลางๆพื้นที่เพื่อให้เส้น Initial line  ผ่าน เมื่อวางแล้วสามารถขยับออกไปซ้ายขวาได้ รายละเอียดมาว่ากันอีกทีในช่วงคำนวณ workshop

3.คำนวณหาค่าสเกลแฟคเตอร์ k0 ที่แกน Central Meridian

เมื่อได้ความสูงเฉลี่ยของพื้นที่ (Average ellipsoidal height) หรือ h0 มาแล้วจะนำมาคำนวณหาค่าสเกลแฟคเตอร์ (Axis Scale Factor) ที่แกนเของเส้นโครงแผนที่ ใชัสัญลักณ์ว่า k0 โดยคำนวณได้ดังนี้

จะเห็นว่าการคำนวณขั้นตอนแรกจะคำนวณหา RG ก่อนตามสูตรที่ 2 ซึ่งจะต้องมีพารามิเตอร์ของทรงรี a, e และค่าพิกัด latitude (φ) เมื่อได้ค่า RG แล้วนำค่าไปแทนหาค่า k0 ได้ดังสูตรแรก ค่า k0 ส่วนใหญ่แล้วเลือกมาใช้แค่ทศนิยมหกตำแหน่งก็พอแล้ว ขั้นตอนการคำนวณนี้เอง ผู้อ่านสามารถนำทูลส์ “Init Design LDP” มาช่วยได้ ซึ่งรายละเอียดจะได้กล่าวในภายหลัง

4.ตรวจสอบความเพี้ยนตลอดทั้งพื้นที่

เมื่อได้เส้นโครงแผนที่ความเพี้ยนต่ำมาแล้ว ก็จะเตรียมจุดในพื้นที่ที่จะนำมาหาค่าความเพี้ยน (distortion) ซึ่งใช้สัญลักษณ์ δ เมื่อคำนวณความเพี้ยนมาทุกจุด สามารถนำมาสร้างเส้นขั้นความสูง (contour) ได้ เพื่อหาชุดที่ค่าความเพี้ยนต่ำที่สุด

สูตรคำนวณค่าความเพี้ยนหาได้ดังสูตรด้านล่าง ค่า k คือ grid scale factor ของจุดที่คำนวณค่าได้ตามเส้นโครงแผนที่ที่เลือกมา

ถ้าได้ค่าเฉลี่ยความเพี้ยนที่ต่ำสุด แต่ยังได้ค่าที่ไม่ได้เกณฑ์ที่ตั้งไว้ กระบวนการคำนวณนี้จะเวียนกลับไปที่ข้อ 2 และข้อ 3 อีกครั้ง  โดยการขยับหา CM ไปด้านตะวันออกหรือด้านตะวันตก หรือขยับ latitude of origin ในกรณีเลือกใช้ TM หรือ standard parallel ในกรณีใช้ LCC ขึ้นไปทางทิศเหนือหรือขยับมาทางทิศใต้ ซึ่งจะมีผลทำให้ค่า k0 ที่ได้จากการคำนวณเปลี่ยนไปจากค่าเดิม จากนั้นทำการคำนวณหาค่าความเพี้ยนทั้งพื้นที่ใหม่อีกครั้ง

ในขั้นตอนนี้สามารถนำทูลส์ “Create LDP” มาช่วยได้ ซึ่งรายละเอียดการคำนวณที่ใช้ทูลส์มาช่วยจะได้กล่าวในรายละเอียดในหัวข้อถัดไป

5.กำหนดพารามิเตอร์เส้นโครงแผนที่ความเพี้ยนต่ำให้เรียบง่าย

ดังที่ผมกล่าวมาแล้ว ค่า k0  จะกำหนดไว้แค่ทศนิยมที่หกเท่านั้น การเปลี่ยนแปลงทศนิยมที่หกเทียบเท่ากับค่าความสูงเปลี่ยนไป 6.4 เมตรหรือประมาณ 1 ppm

การกำหนดค่า k0 ดังตัวอย่างเช่น k0 = 0.999997 หรือ k0 = 1.000012 ส่วนค่า latitude of origin หรือ standard parallel จะเลือกใช้ค่าที่เป็นจำนวนเต็มของลิปดาเช่น  latitude of origin = 23°47’N ส่วน central meridian ก็เช่นเดียวกันเช่น central meridian = 90°24’E

การกำหนดค่าพิกัดสำหรับจุดกำเนิดของระบบพิกัดฉาก (grid of origin) การกำหนดค่านี้ได้แก่ false easting และ false northing นั่นเอง การกำหนดที่นิยมค่าจะไม่เกินหลักแสนเพื่อไม่ให้ไปสับสนกับค่่าพิกัดในระบบ UTM/SPC และค่าพิกัดในพื้นที่ของเส้นโครงแผนที่ต้องไม่ติดลบ ตัวอย่างเช่น false northing = 200000 false easting = 100000

6.กำหนดหน่วยระยะทางและพื้นหลักฐานให้ชัดเจน

กำหนดหน่วยให้ชัดเจนเช่น Linear unit = metric และพื้นหลักฐานที่อ้างอิงเช่น Geometric reference system = WGS 1984

ออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล

ก็ถือว่าเป็นกรณีศึกษาในเบื้องต้น ถ้าสมมติจะออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำในพื้นที่ประมาณ 80 กม. x 90 กม. ระยะทางจากด้านเหนือไปทางใต้ประมาณ 90 กม. ระยะทางจะด้านตะวันออกไปด้านตะวันตกไม่เกิน 80 กม. ค่าความเพี้ยนที่มากสุดต่ำสุดควรจะเป็นเท่าไหร่ ข้อได้เปรียบที่คิดไว้ในใจสำหรับพื้นที่กรุงเทพมหานครและปริมณฑลคือค่าระดับเฉลี่ยค่อนข้างต่ำ ดังนั้นความเพี้ยนที่เกิดจากความสูงต่างไม่น่าจะมากนัก

Bangkok-Samutprakarn-Nonthaburi-Pathumthani

ก็ติดตามกันตอนต่อไปมาว่าเรื่องรายละเอียดตอนออกแบบตามวิธีการที่นำเสนอไป 6 ข้อดังกล่าวข้างต้น

แนะนำการใช้เส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection)

 Low Distortion Projection คืออะไร

เส้นโครงแผนที่ทุกอันจะมีความเพี้ยน (distortion) เป็นความจริงที่ไม่สามารถหลีกเลี่ยงได้ ความเพี้ยนนี้ก็คือระยะทางที่ต่างกันระหว่างวัดจริงๆของจุดสองจุดบนพื้นผิวภูมิประเทศของโลกกับระยะทางที่ได้จากแผนที่ ความเพื้ยนนี้จะมีความสลักสำคัญอย่างมาก ดังตัวอย่างเช่นที่ผมได้กล่าวไปแล้วใน ตอนก่อนหน้านี้ ที่ค่าความเพื้ยนมากถึง ±823 ppm (ระยะทาง 1 กม. จะมีความเพี้ยนถึง 823 มม. หรือ 82.3 ซม.)

ความเพี้ยนนี้อาจนำไปสู่ความคิดที่ว่าระยะทางตัวไหนกันแน่ที่เป็นค่าที่ถูกต้อง ค่าความเพี้ยนนี้ไม่สามารถกำจัดออกไปได้ แต่สามารถทำให้น้อยลงได้ ด้วยวิธีการที่ผมจะนำเสนอต่อไปคือ Low distortion projection (LDP) ถ้าแปลอนุมานได้วา เส้นโครงแผนที่ความเพี้ยนต่ำ ต่อไปผมจะเรียกสั้นๆว่า LDP

LDP คือเส้นโครงแผนที่รักษามุม (Conformal Projection) และนำมาประยุกต์ใช้ในพื้นที่กว้างใหญ่ โดยที่ค่าความเพี้ยนนั้นน้อยจนสามารถที่จะยอมรับได้

ความเป็นมา

แรกเริ่มเดิมทีในอเมริกา ตั้งแต่ทางการได้ประกาศใช้ระบบพิกัด State Place Coordinate System (SPC) มาตั้งแต่ NAD27 จนกระทั่ง NAD83 และตัว NAD83 เองก็มีการปรับแบบ realizationเป็นระยะๆ ปัญหาเรื่องสเกลแฟคเตอร์ ที่บางรัฐมีค่าความเพี้ยนมาก ทำให้ยุ่งยากต่อการปฏิบัติงานในสนามของช่างสำรวจ ในช่วง 20 ปีที่ผ่านมา ได้มีคนนำ LDP มาใช้ ทำให้มีการถกเถียงกันในวงกว้างพอสมควร ว่าอาจจะนำไปสู่่ความไม่มีมาตรฐาน แต่สุดท้ายทางการ National Geodetic Survey (NGS) ได้ออกประกาศแนวทางการนำไปใช้ ทำให้การถกเถียงสิ้นสุดลง มีการนำไปใช้อย่างกว้างขวาง ในการออกแบบสิ่งก่อสร้างโครงการต่างๆ ทำให้งานสำรวจในภาคสนามได้รับความสะดวกมากขึ้น เช่นงานสำรวจเก็บพื้นที่ภูมิประเทศ งานสำรวจวางผัง ที่ไม่ต้องกังวลกับค่าสเกลแฟคเตอร์ และสุดท้ายสามารถแปลงค่าพิกัดบน LDP เหล่านี้ไปหาระบบพิกัดฉากของรัฐ (SPC) ได้ทำให้ไม่มีปญหาสำหรับการแปลงข้อมูลในงาน GIS

ชนิดของความเพี้ยน

ความเพี้ยน (distortion) เป็นผลจากการที่นำลักษณะของวัตถุบนพื้นโลกที่โค้งไปแสดงผลบนระนาบราบบนกระดาษ ไม่สามารถกำจัดได้ แต่ทำให้มันน้อยลงได้ ความเพี้ยนมี 2 ประเภทคือ

  1. ความเพี้ยนเชิงเส้น (Linear distortion)  คือระยะทางที่ต่างกันระหว่างวัดจริงๆของค่าพิกัดของจุดสองจุดบนพื้นผิวภูมิประเทศของโลกกับระยะทางที่ได้จากคำนวณจากค่าพิกัดบนระบบพิกัดฉาก ใช้สัญลักษณ์ δ
    • การแสดงความเพี้ยนจะนิยมใช้อัตราส่วน ppm – part per million คือหนึ่งล้านต่อล้านส่วน ลองมาดูที่ไปที่มา ระยะทาง 1 กม. ถ้าทำเป็นหน่วยมิลลิเมตร จะได้ 1 กม. = 1000 ม. = 1000 x 1000 = 1000000 มิลลิเมตร ดังนั้นถ้า 20 ppm จะหมายถึง 20 มม.ต่อ 1 กม. (ต่อหนึ่งล้านมิลลิเมตร)
    • เครื่องหมาย δ สามารถเป็นได้ทั้งบวกและลบ ถ้าเป็นลบจะหมายถึงว่าระยะทางบนระบบพิกัดฉากจะสั้นกว่าระยะทางจริงบนพื้นโลก ถ้าเครื่องหมายเป็นบวกแสดงว่า ระยะทางบนระบบพิกัดฉากจะยาวกว่าระยะทางจริงๆที่วัดบนพืนโลก
  2. ความเพี้ยนเชิงมุม (Angular distortion) ความเพี้ยนของมุมทิศเหนือของระบบพิกัดฉาก (grid north) กับทิศเหนือจริง (geodetic north) เรียกความต่างของมุมนี้อีกชื่อหนึ่งว่า convergence แทนด้วยสัญลักษณ์ γ
    • มุม convergence จะเป็นศูนย์ถ้าจุดนั้นอยู่บนเส้น central meridian (CM) ของ TM หรือ standard parallel ของ LCC และค่ามุมนี้จะมากขึ้นเรื่อยๆตามระยะทางที่ไกลออกมาจาก CM ความสำคัญของความเพี้ยนเชิงมุมนี้จะไม่สำคัญมากเท่ากับ ความเพี้ยนเชิงเส้น ความเพี้ยนเชิงมุมสามารถจำกัดมันได้ ด้วยจำกัดพื้นที่ของโครงการไม่ให้ใหญ่มากเกินไป (ระยะทางจาก CM ไม่มากเกินไป)

การเลือกเส้นโครงแผนที่

การเลือกเส้นโครงแผนที่สำหรับการทำแผนที่สเกลใหญ่ๆ สำหรับ LDP เท่าที่นิยมกันมากจะมีอยู่ 3 ประเภทเท่านั้นคือ

  1. Transverse Mercator (TM) ใชักันมากเส้นโครงนี้ได้จากการใช้ทรงกระบอกในแนวนอนราบมาครอบทรงรี ที่เราคุ้นกันดีก็คือ UTM พื้นที่ที่เหมาะสมคือประเทศที่มีพื้นที่มีความยาวจากเหนือไปใต้ เช่นประเทศไทยก็เหมาะสมกับแบบนี้
  2. Lambert Conformal Conic (LCC) ใช้กันมากพอสมควรในหลายๆประเทศ โดยเฉพาะอเมริกาและยุโรป ได้จากการใช้ทรงกรวยมาครอบทรงรีในแนวตั้ง เหมาะสมสำหรับประเทศที่มีพื้นที่ที่ยาวจากตะวันตกไปตะวันออก (ระบบพิกัดของเมียนมาร์ก็เคยใช้เส้นโครงนี้ก่อนจะเปลี่ยนมาใช้ UTM ในระบบพิกัด Myanmar Datum 2000 ในปัจจุบัน  ซึ้งพื้นที่ของเมียนมาร์จะยาวจากเหนือลงมาใต้คล้ายของประเทศไทย)
  3. Oblique Mercator (OM) เป็นเส้นโครงแผนที่ที่ได้จากการใช้ทรงกระบอกแบบเอียงเป็นมุม มาครอบทรงรีให้แนวตัดพาดผ่านไปตามพื้นที่ พื้นที่ที่จะเลือกมาใช้เส้นโครงแบบนี้จะเป็นลักษณะยาวเฉียงๆจากตะวันออกเฉียงเหนือลงมาทิศตะวันตกเฉียงใต้ หรือตะวันตกเฉียงเหนือลงมาทิศตะวันออกเฉียงใต้

AcroRd32_2017-03-21_12-54-07

สำหรับ OM ถ้าจินตนาการลำบาก ลองดูรัฐอลาสก้า โซน 1 (Alaska zone 1) ของอเมริกาที่ใช้เส้นโครงแผนที่ OM ลองดูจากรูปด้านล่างเข้าใจได้ง่าย

mappro choice

จะเห็นรอยประ รอยนี้คือที่ทรงกระบอกสัมผัสกับทรงกลม (aposphere) ย้ำว่าทรงกลมไม่ใช่ทรงรี จากนั้นถึง project จากทรงกลมนี้ลงบนทรงรีอีกที สำหรับ OM นั้นซับซ้อนกว่าเส้นโครงแผนที่อื่นเล็กน้อย รอยประ (initial line) นี้ในพารามิเตอร์การแปลงพิกัดจะกำหนดเป็นค่าอะซิมัทเรียกว่า azimuth of initial line และเส้นรอยประนี้จะไปตัดกับศูนย์สูตรของทรงกลม aposphere ที่ natural origin เส้นรอยประนี้จะกำหนดสเกลให้เรียกสเกลนี้ว่า scale factor of initial line  และจะกำหนดจุดใดจุดหนึ่งที่อยู่บนเส้นประนี้เรียกว่า center of projection

มิตรประเทศแถวๆบ้านเรา ก็มีมาเลเซียที่ใช้เส้นโครงแผนที่นี้อยู่ เรียกว่า Malaysia Rectified Skew Orthometric (Malaysia RSO) ประเทศอื่นที่ใช้ได้แก่ สวิตเซอร์แลนด์, มาดากัสการ์, ฮังการี

AcroRd32_2017-03-22_15-44-02

พฤติกรรมความเพี้ยนเชิงเส้นของเส้นโครงแผนที่

ก่อนจะไปถึงการออกแบบและประยุกต์ใช้เส้นโครงความเพี้ยนต่ำ ลองมาศึกษาพฤติกรรมของความเพี้ยนเชิงเส้นว่าขึ้นอยู่กับอะไรบ้าง เมื่อรู้พฤติกรรมนี้แล้วสามารถนำไปประยุกต์ใช้ได้อย่างเหมาะสม

ความเพี้ยนเชิงเส้นเกิดจากตัวแปรสองตัวแปรคือความโค้งของผิวโลกและความสูงเหนือทรงรี มาลองพิจารณาความเพี้ยนที่เกิดจากตัวแปรแรกคือความโค้งของผิวโลก ตารางด้านล่างแสดงความเพี้ยนเชิงเส้นในแนวราบเทียบกับความกว้างของแต่ละโซนของเส้นโครงแผนที่

EXCEL_2017-05-16_15-24-46

จะเห็นว่าถ้าความกว้างของโซนเส้นโครงแผนที่ไม่กว้างมากจะมีค่าความเพี้ยนที่ต่ำ ส่วนความกว้างของโซน UTM ผมคิดที่ latitude 13° พาดผ่านกรุงเทพฯ ความกว้างประมาณ 650 กม. โซน UTM จะกว้างมากที่สุดที่เส้นศูนย์สูตร จากนั้นจะค่อยๆสอบเล็กลงตาม latitude ที่เพิ่มมากขึ้น ตัวอย่างเช่นรัฐทางเหนือของอเมริกาที่ latitude 40° จะมีความกว้างประมาณ 410 กม.

ความเพี้ยนเชิงเส้นอีกตัวแปรหนึ่งจะขี้นอยู่กับค่าระดับความสูงเมื่อเทียบกับทรงรี (Ellipsoidal height) โดยประมาณแล้ว ความสูงที่เปลี่ยนจากเดิม 30 เมตร ค่าความเพี้ยนเชิงเส้นจะเปลี่ยนไปประมาณ ± 4.7 ppm คงที่ พิจารณาจากตารางด้านล่าง

EXCEL_2017-05-16_16-25-07

การประยุกต์และนำไปใช้

สองตัวแปรนี้เวลาคิดความเพี้ยนเชิงเส้นรวมจะเอามาคูนกัน สมมติว่าต้องการออกแบบความกว้างของโซนของเส้นโครงแผนที่ Transverse Mercator กว้าง 81 กิโลเมตร มีค่าความเพี้ยนทางราบ ±10 ppm ยาวขึ้นไปทางเหนือ 100 กม. ถ้าใช้เส้นโครงแผนที่ TM หมายเหตุเหนือ-ใต้ที่ longitude เดียวกันจะมีค่า grid scale factor เท่ากัน ดังนั้นจะยาวมากกว่านี้ก็ได้

ผมกำลังสมมติเล่นๆว่าถ้าต้องการออกแบบและสร้างเส้นโครงแผนที่ สำหรับกรุงเทพมหานคร รวมปริมณฑลเช่นสมุทรปราการ. นนทบุรี, ปทุมธานี จะสามารถทำได้ไหม ค่าระดับบนพื้นดินของกรุงเทพและปริมณฑล ผมไม่มีตัวเลขเป๊ะ แต่ค่าเฉลี่ยสูงต่ำน่าจะไม่เกิน 10 เมตร ซึ่งผมคำนวณค่าความเพี้ยนที่เกิดจากความสูงได้ ±1.6 ppm เมื่อนำความเพื้ยนทั้งสองตัวแปรมาคูนกันจะได้ ±16 ppm ซึ่งไม่เกินตัวเลขในฝันคือไม่ควรเกิน ±20 ppm

สำหรับหนึ่งกม.ระยะทางบนระบบพิกัดฉากกับระยะทางบนพื้นดิน ต่างกันแค่ 16 มม. ถือว่าน้อยมากครับ สมมติว่ามีหมุด GPS หนึ่งคู่ คำนวณระยะทางบนระบบพิกัดฉาก LDP ห่างกัน 100.0 เมตรพอดี  จากนั้นเอากล้อง  total station มาทดสอบวัดระยะทางซึ่งควรจะได้ 100.0016 เมตร ถ้าตัวเลขค่าความเพี้ยนเป็นบวก หรือวัดได้ 99.9984 เมตร ถ้าค่าความเพี้ยนเป็นลบ ต่างกัน 1.6 มม. ผมก็ยังถือว่าน้อยนะครับ

เช่นเดียวกันถ้าเอากล้อง total station มาวางผัง ก็ยังรับกันได้สบายๆ การสำรวจภูมิประเทศก็สามารถทำได้ตามปกติ การเก็บขอบเขตที่ดินก็สามารถทำได้เช่นเดียวกัน และที่สำคัญที่สุดคือระบบพิกัดบน LDP สามารถแปลงไปหาระบบพิกัดฉาก UTM หรือ Geographic ได้ตลอดเวลาที่ต้องการ ส่วนใหญ่ซอฟแวร์ด้าน GIS หรือด้าน CAD ทั้งหลายก็สนับสนุนการใช้ LDP ได้อยู่แล้วในขณะนี้ เพียงแต่ค่าพารามิเตอร์ของ LDP  ต้องไปกำหนดให้ซอฟแวร์เหล่านี้ได้รู้จัก

ตัวอย่างการใช้งาน

ตัวอย่างการใช้งานผมเข้าไปศึกษารัฐโอเรกอนของอเมริกาครับ เข้าไปดูได้ตามลิ๊งค์นี้ Oregon Coordinate Reference System และมีคู่มือกล่าวถึงที่มา การศึกษาออกแบบอ่านได้ตามลิ๊งค์นี้ OCRS Handbook & User Guide ซึ่งรัฐโอเรกอนพื้นที่เล็กกว่าประเทศไทยครึ่งหนึ่ง จำนวน LDP ทั้งหมดในรัฐนี้ 39 เส้นโครงแผนที่ มีครบหมดไม่ว่าจะเป็น Transverse Mercator, Lambert Conformal Conic และ Oblique Mercator ดูตามรูปด้านล่าง

chrome_2017-05-16_20-10-55

เครื่องมือตัวใหม่

Init Design LDP เป็นเครื่องมือตัวใหม่ที่กำลังพัฒนาครับ เนื่องจากการออกแบบ LDP ค่อนข้างจะมีการลองแล้วทดสอบหาค่าความเพี้ยนเปรียบเทียบกัน โดยมีการขยับย้ายแกน central meridian  และสลับกับการเปลี่ยนค่า scale factor (k0) ที่แกน central meridian ด้วย ทำให้โปรแกรมไม่สามารถเขียนได้ลึกซึ้งขนาดนั้น จึงเป็นเครื่องมือที่มาช่วยออกแบบในเบื้องต้น

Create LDP เป็นเครื่องมืออีกตัวที่กำลังพัฒนาเช่นเดียวกัน เมื่อได้พารามิเตอร์ของเส้นโครงแผนที่ต่ำแล้วสามารถนำมาป้อนและจัดเก็บเข้าฐานข้อมูล นอกจากนี้ยังสามารถคำนวณหาค่าความเพี้ยน แปลงพิกัดจากระบบพิกัดมาตรฐานทั่วๆไป มายัง LDP ได้โดยที่ LDP สามารถออกแบบและเก็บไว้ในฐานข้อมูลได้ อนาคตจะนำ LDP นี้ไปรวมกับการแปลงพิกัดทั่วๆไปเช่น Transform Coordinates, File Transform Coordinates หรือ Area

 

ถ้าโปรแกรมทูลส์สองตัวนี้เสร็จก็น่าจะได้นำจะมาลองออกแบบ LDP ดูกันเป็นกรณีศึกษา เริ่มตั้งแต่หาค่าความสูงจาก ellipsoid ซึ่งเป็นตัวแทน (h0) ที่จะว่าง LDP บนระนาบนี้ จากนั้นจะหาจุดศูนย์กลางของพื้นที่เพื่อวาง Central meridian จากนั้นกำหนดค่า scale factor (K0) และที่สำคัญคือการคำนวณหาค่าความเพี้ยนเพื่อเปรียบเทียบ จากนั้นจะมีการปรุงและกลั่น ปรับค่าโดยการขยับ Central Meridian หรือปรับค่า K0 จนความเพี้ยนเฉลี่ยในพื้นที่โครงการมีค่าน้อยที่สุด

แนวทางการออกแบบนี้ผมเดินตามทาง Michael L. Dennis ที่ตัวผมเองนับถือและคิดว่าเขาเป็นเจ้าพ่อในด้านนี้ มีงานเขียนออกมามากมายเพราะเป็นที่ปรึกษาและรับงานออกแบบ LDP ในหลายๆรัฐของอเมริกา ลองค้นชื่อนี้กับคำว่า LDP  ดูจะเห็นลิ๊งค์มากมาย

ส่วนจะมีใครนำ LDP ไปใช้ที่ไหน อย่างไร ก็เป็นเรื่องอนาคตที่ดี ถ้ามีหน่วยงานคล้ายๆของรัฐโอเรกอน มาออกแบบและตั้งเป็นมาตรฐานก็น่าจะดี นอกจากจะสะดวกสำหรับช่างสำรวจทำแผนที่หน้างานหรืองานสำรวจสำหรับวางผัง ไม่ว่าจะเป็นโครงการเล็กๆจนถึงโครงการใหญ่ๆและยาวๆเช่นทางด่วน ถนนมอเตอร์เวย์ ก็ยังสามารถประยุกต์ใช้งานกันได้ดี

พบกันตอนต่อไปครับ ปิดท้ายด้วยวาทะนี้ “เป็นความจริงที่ความเพี้ยนของเส้นโครงแผนที่ไม่สามารถกำจัดได้ แต่สามารถทำให้น้อยลงได้

 

 

ปลดพันธนาการ PyQt5 ด้วย PySide2

ตอนนี้ถือว่ามาเล่าสู่กันฟังจากประสบการณ์ เป็นเรื่องโปรแกรมมิ่ง ถ้าไม่สนใจเรื่องโปรแกรมมิ่งก็ผ่านไปได้ครับ

PyQt5 กับลิขสิทธิ์แบบ GPL v3

ผมเขียนไพทอนด้วยการใช้ PyQt5 มาได้สักระยะเวลาหนึ่ง น่าจะสองปีกว่าได้ ยอมรับว่าชอบมากๆ ก็ไม่ได้ระแวดระวังเรื่องกฎหมายลิขสิทธิ์เท่าไหร่นัก ลิขสิทธิ์ของ PyQt5 เป็นแบบ GPL v3 ซึ่งสาระโดยรวมๆสามารถเอาไปใช้ได้สองกรณีคือ พัฒนาโปรแกรมแบบเปิดโค๊ด (open source) และแจกจ่ายฟรีพร้อมโค๊ด กรณีนี้ไม่จำเป็นต้องเสียเงินค่าลิขสิทธิ์ แต่ถ้าเป็นกรณีที่สองคือการพัฒนาโปรแกรมเพื่อการค้าและปิดโค๊ด จะต้องเสียค่าลิขสิทธิ์ประมาณ 500US$ ต่อปี ซึ่งไม่น่าจะมากมายนัก ผมเองเอา PyQt5 มาใช้และแจกจ่ายโปรแกรมของผมให้ฟรีก็จริงแต่ปิดโค๊ด ยังไม่พร้อมที่จะเปิดโค๊ดและจ่ายค่าลิขสิทธิ์เนื่องจากไม่ได้หารายได้จากโปรแกรมที่แจกจ่ายไป

ทางสองแพร่ง

ผมลองมองหาเครื่องมือพัฒนาตัวอื่นๆที่มีลิขสิทธิ์เอื้อแบบปิดโค๊ดแต่ยังสามารถใช้ได้ฟรี ที่อ่านๆมาแล้วอยู่ในใจคือ Kivy Platform

  • Kivy framework Platform รองรับภาษาไพทอน ข้อดีหลายอย่างคือ  cross platform  เขียนโปรแกรมครั้งเดียวสามารถนำไปคอมไพล์ บิวด์ได้บน Linux, Mac OS หรือสามารถพอร์ตลงไปหามือถือ Android, IOS ก็ได้ ที่สำคัญคือเป็นโครงการเปิดโค๊ด มีลิขสิทธิ์แบบ MIT License ซึ่งนอกจากจะเปิดโค๊ดแล้ว ยังอิสระเสรีมาก ซอฟแวร์ที่ใช้ลิขสิทธิ์แบบนี้ ผู้ใช้สามารถเอาไปทำอะไรก็ได้ตั้งแต่ก๊อปปี้ แก้ไข รวม แจกจ่ายหรือกระทั่งนำไปขายก็ได้ สุดท้ายถ้าใช้ Kivy พัฒนาก็ยังสามารถนำโปรแกรมไปทำการค้าได้
  • แต่ปัญหาของผมคือ โปรแกรมที่เขียนมีขนาดค่อนข้างใหญ่แล้ว การพอร์ตจากโค๊ดของ PyQt5 ไปยัง Kivy ไม่ใช่่จะทำได้ง่ายๆ เนื่องจาก Kivy มีรูปแบบ GUI ของตัวเอง ไม่ง่ายครับต้องใช้เวลามาก

PySide2 ผู้มาช่วยชีวิต

ในขณะที่กำลังจะจมน้ำอยู่นั้น นึกถึง PySide รุ่นแรกซึ่งรองรับและใช้ได้แค่ Qt4 ไม่ใช่ Qt5 ที่ผมตกร่องปล่องชิ้นไปแล้ว การจะ downgrade กลับหลังหันไปใช้ Qt4 ผ่าน PySide รุ่นหนึ่งไม่ได้ง่ายต้องรื้อโค๊ดพอสมควร เผลอๆอาจจะยากกว่าการกลับไปขอคืนดีกับแฟนเก่า 🙂 ส่วนเรื่องลิขสิทธิ์เท่าที่ทราบมาคือ PySide ใช้ลิขสิทธิ์แบบ LGPL v2.1 คือสามารถนำไปใช้พัฒนาโปรแกรมสำหรับปิดหรือเปิดโค๊ดได้ ทั้งแจกจ่ายฟรีและขายได้ เพียงแต่ไปเอาไลบรารีตัวไหนที่เป็น LPGL มาใช้จะต้องคงความเป็น LGPL ไว้คือต้องเปิดโค๊ตไลบรารีตัวนั้นไปให้ผู้ใช้ด้วย  ข่าวร้ายของ PySide รุ่นหนึ่งคือโครงการตาย ไม่ขยับมาแล้วสามปีกว่า ผมลองค้นเข้าไปลึกๆ ปรากฎว่าโครงการนี้ตอนแรกๆ ได้มีนักพัฒนาอิสระ fork โครงการมาบน Github กลุ่มเล็กๆต่อมาได้ย้ายและไปพัฒนาต่อเป็นทางการจาก Qt Company เจ้าของ Qt framework ตัวจริงเสียงจริง เหมือนฟ้ามาโปรด แต่ยังไม่แน่ใจว่าโค๊ดเดิม PyQt5 ของผมจะ compatible กับ PySide2 แค่ไหน

ในขณะที่ไม่รู้จะทำอะไรก็เลยไปดาวน์โหลดหยิบเอา PySide ตอนนี้เป็นรุ่น PySide2 ที่กำลังพัฒนาอยู่ เป็นไฟล์ wheel ครับที่ทีมงานได้คอมไพล์และบิวท์มาให้ลองใช้ก่อน รุ่นที่ผมหยิบมาใช้ในขณะนี้ บิวท์นานมาแล้วประมาณหกเดือนกว่า รุ่นล่ากว่านี้ยังไม่มี

PySide2 ใช้ลิขสิทธิ์แบบ LGPL v2 เหมือนกันกับ PySide รุ่นหนึ่ง เมื่อดาวนโหลดมาแล้วก็ติดตั้ง มาลองดูว่าพอไปได้ไหม ผมใช้เวลาว่างๆตอนเลิกงานลองไปหก เจ็ดวัน สำเร็จครับ ส่วนใหญ่ใช้ได้กับโค๊ดเดิม แค่ตอน import ไลบรารีเปลี่ยนแค่หัวจาก PyQt5 มาเป็น PySide2 มีส่วนนิดเดียวผมแก้ไขโค๊ดใหม่ให้เข้ากับ PySide2 แต่น้อยมาก และที่เจออีกหนักอีกหน่อยคือ ระบบรายงานผลการแสดงภาพบนจอมอนิเตอร์คือ Screen ยังไม่เสร็จ ทำให้ผมไม่สามารถตรวจได้ว่าผู้ใช้ใช้จอที่ resolution เท่าไหร่ มี dot pixel  ratio เท่าไหร่ อันนี้สำคัญเพราะว่าจอ HiDPI เช่นจอ 4K ทั้งหลาย ตอนนี้ใช้กันมากแล้ว เมื่อ PySide2 ไม่มีให้ ต้องไปหาโค๊ดมาช่วย ใช้ Windows API ไปพลางๆก่อน พอเสร็จเมื่อไหร่ ค่อยกลับมาใช้โค๊ดของ PySide2 ที่เสร็จแล้วต่อ

ผมพูดได้ว่าตอนนี้โปรแกรมของผม เกือบจะ 99.9% ใช้ของเดิม มาปรับแต่งเองเพียง 0.1% มันง่ายหรือเพราะโปรแกรมผมไม่ได้ใช้เขียนอะไรพิศดารหรือปล่าวเช่นระบบกราฟฟิคที่เลิศหรู แต่เอาละต้องขอบคุณทีมงาน PySide2 มา ณ ที่นี้ด้วยครับ

ข้อจำกัด PySide2 รุ่นพัฒนา

ข้อจำกัดของ PySide2 รุ่นพัฒนายังมีอยู่มากครับ บางครั้งผมรันโปรแกรมผ่านบรรทัดที่ผิด ไม่มีการนับแปดครับ โดนน๊อคกลางอากาศค้างไปดื้อๆ ก็น่าจะอีกสักพักครับ ที่ทีมงานของ Qt จะบิวท์มาให้ใช้กันใหม่ เพราะของเก่าผ่านมาหกเดือนกว่าแล้ว ตัวใหม่น่าจะเสถียรกว่า ดีกว่า

แปลงเป็นไฟล์ Execute ให้รันได้ นรกของโปรแกรมเมอร์ไพทอน

ปกติผมใช้ PyInstaller  สำหรับแปลงโค๊ดไพทอนเป็น execute file (exe) ที่สามารถนำไปรันได้ ทั้งที่ข้อดีของไพทอนคือเขียนง่าย อ่านง่าย ทรงพลัง และไลบรารีที่มีให้เลือกให้ใช้มากมายมหาศาล แต่เป็นที่รู้กันว่างานแปลงไฟล์จากโค๊ดไปเป็นไฟล์ exe ที่รันใช้งานได้ มันเป็นงานสุดหินสุดโหด ตอนผมเริ่มต้นใหม่ๆ ผมก็ไม่รู้ว่าไลบรารีตัวไหน ต้องการขนเอาไฟล์อะไรไปบ้างเพื่อให้สามารถรันได้ บางตัวขนกันไปเป็นโฟลเดอร์ คือแบบเรือพ่วงลากกันไปเป็นพวงๆ ตอนหลังมารู้ว่า มีไฟล์ hooks ที่ PyInstaller  อ่านมาเพื่อตัดสินใจว่าจะขนอะไรไปให้ โฟลเดอร์ไหน ก็ง่ายขึ้น ไฟล์ hooks ส่วนใหญ่มากับ PyInstaller  ถ้าไม่มีก็ไปค้นหาดาวน์โหลดมาได้

ตอนนี้ PySide2 ยังมีนักพัฒนาเอาไปใช้ในวงจำกัดอยู่ จึงไม่มีไฟล์ hooks ปล่อยมา นรกกลับมาเริ่มต้นกับผมอีกครั้ง ต้องลองทดสอบว่า PySide2 เอาอะไรไปใช้บ้าง ตอนนี้ขณะเขียนบทความนี้ ยังไม่สำเร็จครับ กำลังลองผิดลองถูก ไม่เป็นไรชีวิตย่อมมีหนทางเสมอ ผมใช้เวลาในวันอาทิตย์เกือบค่อนวันก็สำเร็จ สามารถนำไฟล์ exe ไปรันได้ตามปกติ สาเหตุที่ไม่ผ่านในตอนแรก ตัว PyInstaller มีปัญหากับโมดูลระบบชื่อ requests ต้องเอา requests รุ่นที่ไม่มีปัญหากันมาใส่แทน

เมื่อไฟล์ exe รันแล้วไม่ติดขัด ก็จะเป็นขั้นตอนต่อไปคือใช้โปรแกรมจำพวก installer มาใช้เช่น Inno Setup ขวัญใจมหาชนเจ้าประจำผมใช้อยู่ ขั้นตอนนี้ง่ายครับ เตรียมไฟล์ exe ให้พร้อม ไฟล์ไลบรารีทั้งหลาย โฟลเดอร์ที่จำเป็นต้องใช้ จากนั้นทำการ build ก็ได้โปรแกรมติดตั้ง ที่สามารถนำไปติดตั้งใช้งานได้

ดาวน์โหลด (Download)

ไปดาวน์โหลดโปรแกรมรุ่นที่บิวท์ด้วย PySide2  เป็นรุ่น V0.70 build 513 ได้แล้วที่หน้า Download ใครที่ใช้รุ่นก่อนหน้านี้ขอความกรุณาช่วย uninstall และมาดาวน์โหลดรุ่นใหม่ไปใช้ด้วย

python_2017-04-22_18-37-32
Surveyor Pocket Tools ในฉบับของ PySide2 เหมือนเดิมเพราะ engine คือตัว Qt framework เดียวกัน

python_2017-04-22_18-49-45

ตัวอย่างหน้าตาของ Transform Coordinates

ความเป็นมาของ Qt framework

เล่าเรื่อง PyQt5 vs. PySide2 ผู้อ่านบางท่านอาจจะงง ถีงที่มาที่ไป PyQt และ PySide คือเครื่องมือสำหรับพัฒนาโปรแกรมประยุกต์ ที่มีพื้นฐานมาจาก Qt framework ที่พัฒนาด้วย C++ ผู้สร้าง Qt คือบริษัท Trolltech บริษัทเล็กๆนอรเวย์ จากนั้นถูกซื้อไปในปี 2008 โดยโนเกีย (Nokia) ยักษ์ใหญ่ในตอนนั้นจากฟินแลนด์ (ย้อนหลังไป 15-25 ปีที่แล้ว คงไม่มีใครไม่รู้จักโนเกียเพราะเป็นเจ้าพ่อแห่งวงการมือถือ ยุคก่อน IPhone OS และ Android) ทำให้ลิขสิทธิ์ของ Qt ตกมาอยู่กับโนเกีย และโนเกียพยายามจะพัฒนาให้ Qt สามารถใช้กับมือถือได้ (แต่ก็ไม่ทัน ไอโอเอสและแอนดรอยด์ จนแพ้สงครามนี้ในที่สุด) ช่วงที่ Qt อยู่กับโนเกีย ในขณะนั้น Riverbank Computing บริษัทจากอังกฤษได้พัฒนา PyQt  แต่ตอนหลังมีปัญหากัน เพราะ Riverbank ไม่ยอมเปลี่่ยนลิขสิทธิ์ของ PyQt ที่ใช้แบบ GPL ส่วน Qt ใช้ลิขสิทธิ์แบบ LGPL ซึ่งยืดหยุ่นกว่า โนเกียก็ได้พัฒนา PySide ขึ้นมาเพื่อให้มีลิขสิทธิ์แบบเดียวกันกับ Qt แต่สถาณการณ์ของโนเกียตอนนั้นกำลังย่ำแย่มากๆ เพราะมือถือจากไอโอเอสของแอปเปิ้ลกับแอนด์ดรอยของกูเกิ้ลได้ครองตลาดเบ็ดเสร็จแล้ว

ในปี 2011 โนเกียขาย Qt ให้บริษัท Digia จากฟินแลนด์ หลังจากนั้นฉากสุดท้ายแล้วก็เป็นที่ทราบกันดีว่าโนเกียถูกซื้อเสนอซื้อโดยไมโครซอฟท์ในปี 2013 เฉพาะส่วนที่เกี่ยวกับมือถือสมาร์ทโฟนจบการดีลการซื้อขายในปี 2014 และจบตำนานโนเกียในที่สุด สะท้อนของสัจธรรมที่ว่าในโลกนี้ไม่มีอะไรเที่ยงแท้แน่นอน หลังจาก Digia ได้ Qt ไปในปี 2014 ได้ก่อตั้งบริษัท Qt Company และเป็นผู้พัฒนา Qt จนถึงปัจจุบัน และตามที่ผมกล่าวมาแล้ว Qt Company ได้ดึงโครงการ PySide มาสานต่อเป็นโครงการ PySide2 ซึ่งถ้าเปิดใช้เป็นทางการเมื่อไหร่ ผมก็เป็นคนหนึ่งที่ตั้งหน้าตั้งตารอคอย

โครงการในอนาคต

ก็เป็นโครงการที่วาดฝันครับ คือพอร์ตโปรแกรม Surveyor Pocket Tools ลงบนมือถือด้วย Kivy framework คงแยกแต่ละ tool ไปเป็นแต่ละ app ซึ่งก็มีฟรีบ้างขายบ้าง ก็เป็นเรื่องอนาคตไม่ได้ตั้งความหวังอะไรมากมาย ปัจจุบันคือพัฒนาและปรับปรุงโปรแกรมทั้งหลายบน Desktop ให้ใช้งานกันต่อไป และยังยืนยันว่าฟรีเหมือนเดิม และความคิดก็ยังเหมือนเดิมครับ “โลกนี้จะน่าอยู่ ถ้าทุกคนแบ่งปัน ถ้อยทีถ้อยอาศัยกัน

ทิ้งท้ายกันนิดหนึ่งจากหัวข้อ “ปลดพันธนาการ” ก็ดูจะโหดร้ายไป ตั้งให้น่าสนใจแค่นั้นครับ PyQt5 นั้นเป็นเครื่องมือพัฒนาโปรแกรมที่ดีมาก มี document ให้อ่านเยอะแยะ ติดขัดตรงไหน Stackoverflow ช่วยได้ สำหรับคนใช้เครื่องมือเพื่อการค้า ก็อุดหนุนซื้อกันไป แต่ถ้าพัฒนาโปรแกรมแบบเปิดโค๊ดก็ตัวนี้เลย ไม่ผิดหวัง สำหรับผมขอเลือก PySide2 ด้วยเหตุผลที่กล่าวมาข้างต้นทั้งหมด พบกันตอนต่อไปครับ

Surveyor Pocket Tools – ทดสอบโปรแกรมการแปลงพิกัดบน State Plane Coordinate System (SPC)

Surveyor Pocket Tools – ทดสอบโปรแกรมการแปลงพิกัดบน State Plane Coordinate System (SPC)

ในฐานะช่างสำรวจในย่าน AEC บ้านเรา ส่วนใหญ่จะคุ้นเคยกับระบบพิกัดที่ส่วนใหญ่ใช้เส้นโครงแผนที่ Transverse Mercator กันส่วนใหญ่ แต่มาเลเซียนั้นต่างออกไปเนื่องจากมีพื้นที่ที่ยาวเฉียงๆ ทั้งสองพื้นที่คั่นด้วยทะเลจีนใต้ พื้นที่แรกอยู่บนเกาะบอร์เนียวอีกพื้นที่หนึ่งติดกับประเทศไทย ทางมาเลเซียใช้เส้นโครงแผนที่ Oblique Mercator ซึ่งเป็นเส้นโครงแผนที่ค่อนข้างซับซ้อนกว่าอันอื่น

เรามาลองไปทัศนศึกษาที่หรัฐอเมริกาดูกัน สหรัฐอเมริกาเป็นประเทศใหญ่ มีระบบพิกัดและเส้นโครงแผนที่ที่หลากหลายมาก ในฐานะช่างสำรวจพอจะเป็นความรู้ประดับบ่ากันไว้นิดๆหน่อยๆ ไม่ถือว่าเหลือบ่ากว่าแรงจนต้องแบกหาม มาทัศนาผ่านทางโปรแกรมแปลงพิกัด Transform Coordinate ที่อยู่ในชุด Surveyor Pocket Tools

State Plane Coordinate System (SPC)

  • คือกลุ่มระบบพิกัดของสหรัฐอเมริกาที่รวบรวมระบบพิกัดที่ใช้ในแต่ละพื้นที่หรือรัฐทั้งหมด 124 โซน โดยที่รัฐที่มีพื้นที่ติดกันจำนวน 110 โซน และอื่นๆที่เหลือได้แกเช่นอลาสก้า ฮาวาย เปอร์โตริโก้และหมู่เกาะยูเอสเวอร์จิน
  • State Plane Coordinate System (SPC) ปัจจุบันคือ North America Datum 1983 (NAD83) ใช้ทรงรี GRS80 ต่างจากของเดิมคือ NAD27 ที่ใช้ทรงรี Clark 1866

AcroRd32_2017-03-22_08-20-10.jpg

  • เส้นโครงแผนที่ (Map projection) ใช้อยู่ 3 ประเภทคือ
    1. Transverse Mercator (TM) สามารถรักษา scale factor คงที่ได้ในแนวแกนเหนือ-ใต้ จึงนิยมใช้สำหรับพื้นที่ที่ยาวจากเหนือไปใต้
    2. Lambert Conformal Conic (LCC) เนื่องจากสามารถรักษา scale factor ให้คงที่ได้ในแนวแกนตะวันออก-ตะวันตก จึงนิยมใช้กับพื้นที่มีความยาวจากตะวันออกไปตะวันตก
    3. Oblique Mercator (OM) นิยมใช้กับพื้นที่ที่ยาวเฉียงแบบทะแยง ใช้อยู่รัฐเดียวคืออลาสก้า

โปรแกรมแปลงพิกัด Transform Coordinate

  • ถ้าจะดาวน์โหลดก็ดูที่ช่องยาวๆด้านขวาของ blog ในขณะที่เขียนบทความนี้ เป็นรุ่น 0.66 build 501 ดาวน์โหลดแล้วก็ติดตั้ง เมื่อคลิกโปรแกรมและรันจะเห็นไดอะล๊อกหน้าแรกรวมโปรแกรมชุดของ Surveyor Pocket Tools ตามรูปด้านล่างที่ไฮไลต์ไว้คือ “Transform Coordinates” 

Surveyor Pocket Tools_2017-03-21_20-45-41

  • มาดูหน้าโปรแกรม ผม update ข้างในไปมาก ทั้งๆที่ตอนแรกตั้งใจจะเขียนให้ใช้งานได้เฉพาะเส้นโครงแผนที่ Transverse Mercator ไปๆมาๆ ก็ไปไกลเกินกว่าที่ตั้งใจไว้ตอนแรก หน้าตาก็เรียบง่ายแต่เพิ่มเครื่องมือจัดเก็บค่าพิกัดและเรียกใช้ค่าพิกัด รวมถึงเครื่องมือปักหมุดบน google maps & google earth

ทดสอบการแปลงพิกัดบนเส้นโครงแผนที่ Oblique Mercator (OM)

  • จะทดสอบการแปลงพิกัดจากค่าแลตติจูดและลองจิจูด จากทรงรี GRS80 ไปยังระบบพิกัดฉาก NAD83 สำหรับ Alaska zone 1 นี้ใช้ Oblique Mercator ซึ่งพารามิเตอร์ของเส้นโครงแผนที่ OM ตามตารางด้านล่าง
    •  Alazka zone 1 – NAD83
    • Scale factor at the projection’s center = 0.9999
    • Longitude of the projection’s center = 133º 40′ W
    • Latitude of the projection’s center = 57º 0′ N
    • Azimuth at the projection’s center = 323º07’48.3685″
    • Angle from Rectified to Skew Grid =  323º07’48.3685″
    • False Easting (meters) = 5000000
    • False Northing (meters) = -5000000

AcroRd32_2017-03-22_15-44-02

ข้อมูลทดสอบโปรแกรม

  • ข้อมูลทดสอบผมจะใช้หมุดของทางการ ที่สะดวกมากสามารถจะดูหมุดที่ไหนก็ได้ ข้อมูลแต่ละหมุดจะเรียกว่า data sheet เข้าไปดูได้ที่เว็บไซต์ของ NGS ตาม ลิ๊งค์ นี้ครับ
  • อันดับแรกเลือกรัฐก่อน เลือก “Alaska” ต่อจากนั้นเลือก county ให้เลือก “AK|103|KETCHIKAN GATEWAY BOROUGH” จากนั้นคลิกที่ปุ่ม “submit” แล้วจะเห็นหมุดถูกลิสต์ออกมามากพอสมควร ลองเรียงหมุดดูตาม latitude ผมคลิกเลือก “Latitude” แล้วคลิกที่ปุ่ม “Re-Sort-By” ตอนนี้จะเลือกหมุดที่มีหมายเลข PID = UV5754 เลือกแล้วคลิกที่ปุ่ม “Get data sheets” จะได้ data sheet ออกมา
  • ลองดู data sheet  ของหมุด  UV5754 ด้านล่าง

chrome_2017-03-22_08-52-04

  • ที่ผมลากสี่เหลี่ยมไว้ด้านบนคือค่าพิกัดในระบบ geographic ของ NAD83 จะใช้ค่านี้มาทดสอบ เลือกระบบพิกัดและป้อนข้อมูลเข้าไปดังรูป Latitude = 55° 6′ 45.20173″N Longitude = 131° 43′ 58.97516″W

Surveyor Pocket Tools_2017-03-22_09-02-26

  • ด้านขวาปลายทางเลือก Group = “Projected Coordinate System” เลือก Datum = “NAD83 (National Spatial Reference System 2007)” จากนั้นเลือก System = “NAD83(NSRS2007) / Alaska zone 1” พร้อมแล้วคลิกลูกศรขวาเพื่อทำคำนวณ

Surveyor Pocket Tools_2017-03-22_09-07-59

  • จะได้ค่า North = 366701.8435, East = 942069.8596, Grid scale factor = 0.9999085667,  Convergence = 1°36’31.76352″ ซึ่งผลลัพธ์ตรงกันกับ data sheet

ทดสอบการแปลงพิกัดบน Lambert Conformal Conic (LCC)

  • สำหรับเส้นโครงแผนที่ Lambert Conformal Conic (LCC) ส่วนใหญ่จะเป็นแบบรอยตัดสองรอย (secant) บนทรงรี มากกว่าจะเป็นแบบสัมผัส ดังนั้นจะมี Latitude of parallel อยู่ตรงสองรอยตัดด้านบนและด้านล่าง สำหรับข้อมูลทดสอบจะเลือกรัฐ “Oregon” โซนด้านเหนือ พารามิเตอร์สำหรับการแปลงพิกัดมีดังนี้
    • Oregon North Zone (Designation 3601)
      • Oregon State Plane North – NAD 1983
      • Lambert Conformal Conic Two Standard Parallel Projection (Secant)
      • Central Meridian: -120° 30′ W
      • Latitude of Origin: 43° 40′ N
      • Standard Parallel (South): 44° 20′ N
      • Standard Parallel (North): 46° N
      • False Northing: 0.000 m
      • False Easting: 2 500 000.000 m

ข้อมูลทดสอบ

  • ข้อมูลทดสอบจะเข้าไปที่เว็บไซต์ของ NGS แต่ครั้งนี้จะเข้าไปใช้ interactive map แล้วค้นหาชื่อหมุด ตาม ลิ๊งค์ นี้ ด้านซ้ายมือจะมีระบบค้นหาเลือกค้นหาด้วย “PID” ป้อนชื่อหมุด “AJ8179” เมื่อเจอแล้วคลิกที่หมุดในแผนที่แล้ว แล้วคลิก “data sheet” จะได้รายละเอียดมาดังรูป

chrome_2017-03-22_17-16-10

  • ป้อนค่าพิกัดฉากของหมุด AJ8179 เข้าไปดังรูป คลิกที่รูปลูกศรขวา เพื่อจะแปลงพิกัดจาก LCC ไป geographic แต่ในขณะเดียวกันโปรแกรมจะคำนวณค่า grid scale factor และ convergence มาให้ด้วย

Surveyor Pocket Tools_2017-03-22_17-15-44

  • ได้ผลลัพธ์ดังนี้ ตรวจดูกับ data sheet จะได้ค่า grid scale factor และ convergence ตรงกัน ส่วนค่าพิกัดค่าลองจิจูดตรงกัน แต่ค่าแลตติจูดต่างกันเล็กน้อยมากที่ทศนิยมที่ 5

Surveyor Pocket Tools_2017-03-22_17-29-22

ข้อจำกัดของโปรแกรม

  • ในตอนนี้ยังไม่สนับสนุนหน่วยฟุต
  • สนับสนุนการคำนวณ grid scale factor และ convergence ให้เฉพาะเส้นโครงแผนที่ Transverse Mercator, Lambert Conformal และ Oblique Mercator ส่วนเส้นโครงแผนที่อื่นๆคำนวณให้เฉพาะการแปลงค่าพิกัดเท่านั้น เนื่องจากระบบพิกัดในโลกนี้หลากหลายมากมาย ทำให้การทดสอบข้อมูลต้องทยอยทำไปเรื่อยๆ
  • ยังไม่ได้ทดสอบข้อมูลระบบพิกัดของยุโรป European Terrestrial Reference System (ETRS)
  • มาถึงตอนนี้คงพอหอมปากหอมคอ สังเกตว่าผมไม่ได้ทดสอบเส้นโครงแผนที่ TM เนื่องจากบ้านเราใช้กันอยู่และคุ้นเคยกันดีอยู่แล้ว พบกันตอนต่อไปครับ