Tag: Survey

ทดสอบเขียนโปรแกรมไพทอน (Python)  บนเครื่องคิดเลข Casio fx-cg50 Prizm

ทดสอบเขียนโปรแกรมไพทอน (Python) บนเครื่องคิดเลข Casio fx-cg50 Prizm

ไพทอนบนเครื่องคิดเลข

ช่วงนี้ผมมีโอกาสทำงานใกล้ชิดกับภาคสนาม ทำให้มีโอกาสได้จับและใช้เครื่องคิดเลขมากกว่าปกติ ในเวลาที่ผ่านมาไม่ถึงเดือนผมได้ซื้อเครื่องคิดเลข Casio fx-CG50 Prizm เคสสีขาว ที่ซื้อมาเพราะทราบว่าถ้า update OS เป็นรุ่น 3.20 จะสามารถใช้ ไพทอน (Python) ได้ ก็ขอหมายเหตุสักนิดว่าเป็นไมโครไพทอน (Micropython) ที่ทางทีมงาน Micropython ได้พอร์ตออกมาให้มีขนาดเล็กเพื่อเอาไปรันในบอร์ด iOT ได้ หรือบอร์ดที่เป็นไมโครคอนโทรลเลอร์ทั้งหลาย เน้นขนาดเล็ก หน่วยความจำต่ำ กินไฟน้อย ต่ออินเทอร์เน็ตได้ในตัว ผมจะไม่มุ่งไปทางนี้หรอกครับ ในบทความนี้ แต่จะพูดถึงเครื่องคิดเลขคาสิโอ ที่นำเอาไมโครไพทอนมาลงเครื่องคิดเลขรุ่นนี้ เพราะว่าไมโครไพทอนกินหน่วยความจำต่ำ ก็เลยเหมาะสมที่จะเอามารันในเครื่องคิดเลขที่มีทรัพยากรต่ำอยู่แล้ว ให้เกิดประสิทธิภาพมากยิ่งขึ้นไป

เป็นที่ทราบกันว่าไพทอนในปัจจุบันมีความนิยมมากยิ่งขึ้น เนื่องจากเรียนรู้ได้ง่าย เขียนง่าย อ่านง่าย ทรงพลัง แต่สำหรับไมโครไพทอน เนื่องจากออกแบบให้มีขนาดเล็ก ดังนั้นไลบรารีต่างๆที่ใช้ได้ในไพทอนรุ่นใหญ่ จะสามารถนำมาใช้กับไมโครไพทอนได้ต้องมีการพอร์ตใหม่ อาจจะลดฟังก์ชั่นหรือลดสิ่งไม่จำเป็นออก ทำให้มีขนาดเล็กลง ดังนั้นผมทำใจในจุดนี้อยู่แล้ว ว่าไม่สามารถเอาไลบรารีรุ่นใหญ่มารันได้แน่นอนเช่น pyproj, mathplotlib

สำหรับเครื่องคิดเลขที่ใช้ในแวดวงวิศวกรรม โปรแกรมที่เขียนด้วยไมโครไพทอนที่มีไลบรารี math หรืออาจจะเสริมด้วยไลบรารีพวกเมตริก (matrix) น่าจะพอนำมาเขียนใช้งานกันได้

 การพัฒนาโปรแกรมด้วยชุดพัฒนาโปรแกรมภาษาซี (Software Development Kit)

นี่เป็นความข้องใจของผมในฐานะแฟนเครื่องคิดเลขคาสิโอ รุ่น fx-9860G ทางคาสิโอจัดทำ SDK ให้สามารถเขียนโปรแกรมด้วยภาษาซี ที่ผมเขียนโปรแกรมมาแจกใช้ในแวดวงงานสำรวจแล้วหลายโปรแกรม แต่รุ่นนี้กลับไม่ทำมาให้  (ที่จริงไม่ทำมาให้ตั้งแต่ fx-CG10/fx-CG20)ไม่ทราบว่าเพราะเหตุใด เครื่องคิดเลขรุ่นนี้ไม่มี SD Card แต่ทดแทนด้วยการใส่ Flash memory มา 16 MB  ซึ่งก็พอจะใส่โปรแกรมใช้งานได้มากโขอยู่ หรือคิดว่ามีไมโครไพทอน มาให้แล้วน่าจะตอบโจทย์ได้หมด แต่ผมก็ไม่คิดอย่างนั้น ยังมีโปรแกรมเมอร์ภาษาซีอีกพอสมควร และในสภาพแวดล้อมของเครื่องคิดเลขจริงๆ โปรแกรมที่เขียนด้วยภาษาซีจะเร็วกว่าไพทอนอยู่แล้ว แต่ไพทอนได้เปรียบในด้านความง่าย

 เครื่องมือพัฒนาโปรแกรมของชุมชน

ยังมีชุมชนของนักพัฒนาที่สร้าง SDK  ขึ้นมาใช้งานเอง มีประมาณ 2-3 กลุ่มแต่สุดท้ายดูเหมือนไม่มีความเคลื่อนไหวกันมาหลายปีแล้ว เครื่องมือที่มีชื่อเสียงมากที่สุดคือ PrizmSDK และอีกอันคือ mini-SDK ผมเองใช้ไลบรารี MyLib แต่เผอิญผู้พัฒนาได้ทำไว้สำหรับเครื่อง fx-9860G เท่านั้น ไม่เป็นไรขอมุ่งลองไพทอนบนเครื่องคิดเลขรุ่น fx-CG50 นี้ก่อน ถ้าพัฒนาโปรแกรมด้วยภาษาซี ผมก็ยังมุ่งไปที่เครื่องคิดเลข fx-9860G เหมือนเดิม 

ผมลองเขียนโปรแกรมทดสอบเล็กๆลองดูด้วยเครื่องมือ PrizmSDK ก็ได้ดังรูปข้างล่าง (โปรแกรมไม่มีอะไรมีแต่เมนู) เทียบกับโปรแกรม System Manager ที่มากับเครื่อง

คุณสมบัติของเครื่องคิดเลข

โดยรวมรวมแล้วเครื่องคิดเลขนั้นเหมาะสำหรับนักศึกษามาก เพราะมีฟังก์ชั่นคณิตศาสตร์ การเงิน สถิติ มีกราฟมากมายให้ใช้ แต่สำหรับผมแล้วไม่มีอะไรต้องใช้เลย ยกเว้นเรื่องโปรแกรมบนเครื่องคิดเลขอย่างเดียว ถ้าไม่มีสิ่งนี้ก็ใช้เป็นที่ทับกระดาษได้เลย เครื่องรุ่นนี้ใช้โปรเซสเซอร์ตระกูล SH4 ขนาดหน้าจอ 384 x 216 จอ LCD จำนวนสี 65000 สี มีความสว่างพอสมควรและปรับได้ ความกว้างหน้าจอแบบทะแยง 3.17 นิ้ว หน่วยความจำของเครื่อง 60 KB มี Flash memory ที่สามารถเขียนอ่านได้ 16  MB ซึ่งจะเป็นที่เอาไว้เก็บโปรแกรมหรือข้อมูล ใช้ถ่าน AAA 4 ก้อน  เท่าที่ผมเปิดเครื่องใช้บ้างในแต่ละวันมาประมาณสองสัปดาห์ พบว่าแบตเตอรี่ลดลงมานิดหนึ่ง อนาคตอาจจะหาถ่านชาร์จมาใช้ ตอนนี้ใส่อัลคาไลน์ไปก่อน

ประเดิมโปรแกรมด้วยไพทอน

จะลองโปรแกรมทั้งทีผมพยายามให้โปรแกรมมีขนาดซับซ้อนมานิดหนึ่ง  และเรียกใช้โมดูลด้วย คิดไปคิดมาก็เลยจะลองโปรแกรมแปลงค่าพิกัดระหว่างค่าพิกัดภูมิศาสตร์กับค่าพิกัดยูทีเอ็ม เนื่องจากไม่ค่อยมีเวลาเขียน เลยลองหาไลบรารีที่ท่านอื่นได้ทำไว้ ผมเคยเกริ่นไปแล้วข้างต้นว่าไลบรารีรุ่นใหญ่เช่น pyproj ไม่สามารถเอามาใช้ได้ ลองค้นดูพบว่ามีไลบรารีไพทอนเล็กๆ ชื่อ utm มีสัญญาอนุญาตเป็น MIT-License ผมเอาโค้ดมาดัดแปลงนิดหน่อยให้เหมาะสมกับเครื่องคิดเลข แล้วเขียนไปอยู่ในไฟล์ utm.py เพื่อให้สะดวกเวลาเรียกใช้

การเขียนโปรแกรมไพทอน ถ้าไปเขียนบนเครื่องคิดเลข จะชักช้าเสียเวลาครับ เนื่องจากไมโครไพทอน พอร์ตไลบรารีเช่น math แล้ว ดังนั้นถ้าโปรแกรมของเราไม่ได้ใช้อะไรพิศดารมาก ก็สามารถมาเขียนโค้ดบน PyCharm หรือ Idle ได้ ผมเลือก PyCharm เมื่อทดสอบโปรแกรมเสร็จสามารถ โอนโปรแกรมเข้าไปไว้ในเครื่องด้วยการต่อเครื่องคิดเลขด้วยสาย USB เข้ากับคอมพิวเตอร์ที่รันวินโดส์ตามผังด้านล่าง

เมื่อรันโปรแกรมได้ตามความต้องการแล้วจากนั้นก็เอาเครื่องคิดเลขมาต่อกับคอมพิวเตอร์ วินโดส์จะมองเห็นเป็นไดรว์ สามารถใช้ File Explorer ก๊อปปี้โปรแกรมจากคอมพิวเตอร์ไปยังเครื่องคิดเลขได้ ตัวโค้ดโปรแกรมไลบรารีดูได้ด้านล่างครับ


import math
K0 = 0.9996

E = 0.00669438
E2 = E * E
E3 = E2 * E
E_P2 = E / (1.0 - E)

SQRT_E = math.sqrt(1 - E)
_E = (1 - SQRT_E) / (1 + SQRT_E)
_E2 = _E * _E
_E3 = _E2 * _E
_E4 = _E3 * _E
_E5 = _E4 * _E

M1 = (1 - E / 4 - 3 * E2 / 64 - 5 * E3 / 256)
M2 = (3 * E / 8 + 3 * E2 / 32 + 45 * E3 / 1024)
M3 = (15 * E2 / 256 + 45 * E3 / 1024)
M4 = (35 * E3 / 3072)

P2 = (3. / 2 * _E - 27. / 32 * _E3 + 269. / 512 * _E5)
P3 = (21. / 16 * _E2 - 55. / 32 * _E4)
P4 = (151. / 96 * _E3 - 417. / 128 * _E5)
P5 = (1097. / 512 * _E4)

R = 6378137

ZONE_LETTERS = "CDEFGHJKLMNPQRSTUVWXX"

class OutOfRangeError(ValueError):
    pass

def to_latlon(easting, northing, zone_number, hemi):

    northern = (hemi == 'N')

    x = easting - 500000
    y = northing

    if not northern:
        y -= 10000000

    m = y / K0
    mu = m / (R * M1)

    p_rad = (mu +
             P2 * math.sin(2 * mu) +
             P3 * math.sin(4 * mu) +
             P4 * math.sin(6 * mu) +
             P5 * math.sin(8 * mu))

    p_sin = math.sin(p_rad)
    p_sin2 = p_sin * p_sin

    p_cos = math.cos(p_rad)

    p_tan = p_sin / p_cos
    p_tan2 = p_tan * p_tan
    p_tan4 = p_tan2 * p_tan2

    ep_sin = 1 - E * p_sin2
    ep_sin_sqrt = math.sqrt(1 - E * p_sin2)

    n = R / ep_sin_sqrt
    r = (1 - E) / ep_sin

    c = _E * p_cos**2
    c2 = c * c

    d = x / (n * K0)
    d2 = d * d
    d3 = d2 * d
    d4 = d3 * d
    d5 = d4 * d
    d6 = d5 * d

    latitude = (p_rad - (p_tan / r) *
                (d2 / 2 -
                 d4 / 24 * (5 + 3 * p_tan2 + 10 * c - 4 * c2 - 9 * E_P2)) +
                 d6 / 720 * (61 + 90 * p_tan2 + 298 * c + 45 * p_tan4 - 252 * E_P2 - 3 * c2))

    longitude = (d -
                 d3 / 6 * (1 + 2 * p_tan2 + c) +
                 d5 / 120 * (5 - 2 * c + 28 * p_tan2 - 3 * c2 + 8 * E_P2 + 24 * p_tan4)) / p_cos

    return (180/math.pi*(latitude),
            180/math.pi*(longitude) + zone_number_to_central_longitude(zone_number))


def from_latlon(latitude, longitude, force_zone_number=None):
    if not -80.0 <= latitude <= 84.0:
        raise OutOfRangeError('latitude out of range (must be between 80 deg S and 84 deg N)')
    if not -180.0 <= longitude <= 180.0: raise OutOfRangeError('longitude out of range (must be between 180 deg W and 180 deg E)') lat_rad = math.pi/180*(latitude) lat_sin = math.sin(lat_rad) lat_cos = math.cos(lat_rad) lat_tan = lat_sin / lat_cos lat_tan2 = lat_tan * lat_tan lat_tan4 = lat_tan2 * lat_tan2 if force_zone_number is None: zone_number = latlon_to_zone_number(latitude, longitude) else: zone_number = force_zone_number #zone_letter = latitude_to_zone_letter(latitude) if (latitude >= 0):
      hemi = 'N'
    else:
      hemi = 'S'

    lon_rad = math.pi/180*(longitude)
    central_lon = zone_number_to_central_longitude(zone_number)
    central_lon_rad = math.pi/180*(central_lon)

    n = R / math.sqrt(1 - E * lat_sin**2)
    c = E_P2 * lat_cos**2

    a = lat_cos * (lon_rad - central_lon_rad)
    a2 = a * a
    a3 = a2 * a
    a4 = a3 * a
    a5 = a4 * a
    a6 = a5 * a

    m = R * (M1 * lat_rad -
             M2 * math.sin(2 * lat_rad) +
             M3 * math.sin(4 * lat_rad) -
             M4 * math.sin(6 * lat_rad))

    easting = K0 * n * (a +
                        a3 / 6 * (1 - lat_tan2 + c) +
                        a5 / 120 * (5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500000

    northing = K0 * (m + n * lat_tan * (a2 / 2 +
                                        a4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c**2) +
                                        a6 / 720 * (61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2)))

    if latitude < 0:
        northing += 10000000

    return easting, northing, zone_number, hemi


def latitude_to_zone_letter(latitude):
    if -80 <= latitude <= 84: return ZONE_LETTERS[int(latitude + 80) >> 3]
    else:
        return None


def latlon_to_zone_number(latitude, longitude):
    if 56 <= latitude < 64 and 3 <= longitude < 12:
        return 32

    if 72 <= latitude <= 84 and longitude >= 0:
        if longitude <= 9:
            return 31
        elif longitude <= 21:
            return 33
        elif longitude <= 33:
            return 35
        elif longitude <= 42:
            return 37

    return int((longitude + 180) / 6) + 1


def zone_number_to_central_longitude(zone_number):
    return (zone_number - 1) * 6 - 180 + 3


โปรแกรมแปลงพิกัดภูมิศาสตร์ในภาคไพทอน

ผมเขียนไพทอนเป็นโมดูลอีกโมดูลเพื่อเรียกใช้ไลบรารี ตั้งชื่อว่า UTM2GEO.py โดยที่เขียนเมนูติดต่อการใช้งานง่ายๆ

from utm import *
   
def print_menu():
  print(5*'-',"MENU",5*'-')
  print('1: UTM to GEO')
  print('2: GEO to UTM')
  print('0: Exit')

def geo2utm(lon,lat):
  east,north,zn,hem=from_latlon(lat,lon)
  print("North={0:11.3f}".format(north))
  print("East={0:10.3f}".format(east))  
  print("UTM Zone No={0:0d}{1}".format(zn,hem))
    
def utm2geo(e,n,zoneno,hemi):
  lat,lon=to_latlon(e,n,zoneno,hemi)
  print("Latitude={0:11.7f}".format(lat))
  print("Longitude={0:10.7f}".format(lon))   
    
loop=True
while loop:   
  print_menu()
  choice=int(input('Selection[0-2]'))
  if (choice==0):
    loop=False
  elif (choice==1):
    loop=True
    y=float(input("Northing="))
    x=float(input("Easting="))
    zn=int(input("Zone No="))
    hem=input("Hemi (N/S)=")
    utm2geo(x,y,zn,hem)
  elif (choice==2):
    loop=True
    y=float(input("Latitude="))
    x=float(input("Longitude="))
    geo2utm(x,y)   

วิธีก๊อปปี้โปรแกรม

จากนั้นผมก๊อปปี้สองไฟล์คือ utm.py  และ UTM2GEO.py ลงบนไดรว์เครื่องคิดเลขดังนี้

ผมเก็บไว้ที่ไดเรคทอรี \SAVE-F\PROGRAM เวลาจะถอดสาย USB เพื่อเลิกการเชื่อมต่อต้อง Safely removal โดยการคลิกเมาส์ขวา “Eject” ที่ File Explorer จากนั้นมาที่เครื่องคิดเลขจากให้กดคีย์ “EXE” และ “EXIT” ตามลำดับ ถ้าไม่ทำไฟล์อาจจะไม่ได้ซิงค์กันอาจจะหายหรือไม่สมบูรณ์ได้ ที่เครื่องคิดเลขกดคีย์ “MENU” เลือก “Python

แปลงพิกัดจากค่าพิกัดภูมิศาสตร์เป็นค่าพิกัดยูทีเอ็ม

จากรูปด้านบนกดคีย์ F1-Run จะเห็นหน้าจอขึ้นเมนูติดต่อมาง่ายๆ

เราจะเลือกแปลงพิกัดจากค่าพิกัดภูมิศาสตร์ไปเป็นค่าพิกัดยูทีเอ็มเลือกกดคีย์ “2” ที่เครื่องคิดเลขแล้วกดคีย์ “EXE” ป้อนค่าพิกัด Latitude = 39.95259668 Longitude  = -75.15132081 (ป้อนเป็นหน่วยดีกรี ในตอนนี้ยังไม่รับค่าแบบอื่น) จะได้ผลการคำนวณออกมา เนื่องจากในตอนนี้ไม่มีคำสั่งเบรคการแสดงผลเมื่อเขียนด้วยไพทอน (เอาละจะมาบ่นทีหลัง ว่าใส่ไพทอนมาแล้วทางคาสิโอไม่ให้เครื่องมืออะไรมาเลย) การจะดูผลลัพธ์ ผู้ใช้ต้องกดคีย์ “0” เพื่อออกจากโปรแกรมและใช้ลูกศรกดขึ้นไปทางด้านบนเพื่อไปดูผลลัพธ์

จะได้ค่า Northing = 4422506.896 Easting = 487074.371 อยู่ในโซน 18N

แปลงพิกัดจากค่าพิกัดยูทีเอ็มเป็นค่าพิกัดภูมิศาสตร์

ทำการรันโปรแกรมใหม่อีกครั้ง ที่เมนูเลือกกดเลข “1” ป้อนค่าพิกัด Northing = 2642783.110 Easting =232030.949 UTM Zone No = 46 Hemi = N

ดูค่าผลลัพธ์ได้ (กดคีย์ “0” ออกจากเมนูก่อนแล้วเลื่อนขึ้นไปดู)

สรุปการใช้งาน

ตอนแรกผมคาดหวังจากที่ทางคาสิโอเอาไมโครไพทอนมาลงเครื่องคิดเลขรุ่นนี้ ยังไงการเขียนโปรแกรมใช้งานยังไงๆผลลัพธ์ที่ออกมาก็ต้องระดับเทพ เพราะไพทอนมันทรงพลังด้วยตัวของมัน แต่เมื่อลองแล้วผิดหวังมาก จนบัดนี้คาสิโอ้ยังไม่ได้ออกคู่มือแสดงฟังก์ชั่นที่ไพทอนสามารถเรียกมาใช้ได้ มีฟังก์ชั่น input กับ print สองฟังก์ชั่นนี้เท่านั้น เพียงแค่ผมค้นหาฟังก์ชั่น clear screen หน้าจอยังทำไม่ได้ ฟังก์ชั่นที่ต้องการสนับสนุนได้แก่การเขียนเมนูที่เรียกใช้ด้วยคีย์ F1 ถึง F6 การปริ๊นท์แสดงสีต่างๆ การเรียกใช้ฟังก์ชั่นกราฟต่างๆหรือพล็อทกราฟ หรือใช้งานเมตริก เป็นต้น

เอาละตอนนี้ไพทอนที่ปรากฎบน OS รุ่น 3.20 เพิ่งออกมาเตือนตุลาคม 2018 (ขณะที่เขียนบทความนี้เดือนพฤศจิกายน 2018) คงต้องให้เวลาสักพักว่าจะเป็นอย่างไร บอกตามตรงว่าคงต้องเอาเครื่องคิดเลขรุ่นนี้มาทับกระดาษอีกสักพักใหญ่ๆ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 9 โปรแกรมคำนวณหาจุดตัด (Intersection)

งานในด้านสำรวจเป็นงานที่ต้องเกี่ยวข้องกับ Geometry บน plane เป็นส่วนใหญ่ ในบางครั้งอาจจะมีโจทย์ที่ต้องคำนวณหา จุดตัดระหว่างเส้นตรงสองเส้น หรือเส้นตรงกับวงกลม หรือวงกลมกับวงกลม โดยที่เส้นตรงอาจจะทราบค่าพิกัดหัวและท้าย หรือทราบค่าพิกัดเพียงหนึ่งจุดและค่าอะซิมัท ส่วนวงกลมนั้นจะต้องทราบค่าพิกัดจุดศูนย์กลางและรัศมี สูตรการคำนวณไม่ได้ยาก สมัยนี้โจทย์พวกนี้เราใช้โปรแกรมด้าน CAD เขียนแบบช่วยเสียเป็นส่วนใหญ่ อย่างที่ผมเคยบอกออกไปครับ ถ้าช่างสำรวจเรามีโอกาสได้ใช้สมองคิดด้าน geometry บ้างและสามารถใช้เครื่องคิดเลขเป็นตัวช่วย ก็จะสามารถพัฒนาทักษะด้านนี้พอสมควร

โปรแกรมคำนวณหาจุดตัด (Intersection)

โปรแกรมเขียนไว้นานแล้ว แต่มีโอกาสมาปรับแก้ใหม่ให้สามารถคำนวณจุดสัมผัส เช่นเส้นตรงกับวงกลมโดยสามารถตั้ง Tolerance ได้ ผมตั้งไว้ที่ 1 มม. ขอขยายความว่าเราสามารถหาจุดตัดเส้นตรงกับวงกลมได้เป๊ะๆ สองจุด แต่ในกรณีที่เป็นจุดสัมผัส (Tangent) นั้นยากโอกาสน้อยมากที่จะคำนวณหาจุดสัมผัสจากโจทย์ที่กำหนดเส้นตรงที่ผ่านจุดและมีทิศทางตามอะซิมัท มาสัมผัสกับวงกลมที่กำหนดจุดศูนย์กลางและรัศมี  ผมจึงตั้ง tolerance ไว้ 1 มม. ถ้าเส้นตรงมาเฉียดจุดสัมผัสนี้ไม่ว่าจะด้านนอกหรือด้านในวงกลมถ้าระยะห่างเส้นตรงห่างจากจุดสัมผัสจริงน้อยกว่า 1 มม. ก็ให้ถือว่าเส้นตรงเส้นนี้สัมผัสกับวงกลม สำหรับไอคอนโปรแกรมเมื่อติดตั้งแล้ว ดังรูปด้านล่าง

ดาวน์โหลดและติตตั้งบนเครื่องคิดเลข

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม Intersection จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “INSCTEX.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มต้นใช้งานโปรแกรมหาจุดตัด (Intersection)

กดคีย์ “Main Menu” ของเครื่องคิดเลขใช้คีย์ลูกศรไล่ไปหาไอคอนโปรแกรม Intersection ดังรูป แล้วกดคีย์ “EXE”

เมนูหลักของโปรแกรม

จะเห็นหน้าตาโปรแกรม เหมือนทุกๆโปรแกรมจะมีชื่อโปรแกรม รุ่น พร้อมทั้งบอกลิขสิทธิ์ย่อๆว่าสามารถใช้งานได้ฟรี หรือสำเนาจ่ายแจกให้คนอื่นได้ ซึ่งจะมีเมนูหลักดังนี้

F1 – Set สำหรับเลือกการคำนวณว่าจะเป็นเส้นตรงตัดกับเส้นตรง เส้นตรงกับวงกลม หรือวงกลมกับวงกลม

F2 – IN (Input) จะเป็นการป้อนค่าพิกัดหรืออะซิมัท ตามตัวเลือกที่เลือกไว้ในเมนูแรก (F1 – Set)

F3 – Calc คำนวณหาจุดตัด ซึ่งในเมนูย่อยสามารถแสดงรูปเส้นตรง (Plot) วงกลมพร้อมจุดตัดได้

F5 – Info แสดงเครดิตไลบรารี ที่โปรแกรมนำมาใช้งาน

F6-Exit ออกจากโปรแกรม

ตัวอย่างที่ 1 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Line and Line Intersection)

เป็นการคำนวณหาจุดตัดเมื่อกำหนดเส้นตรงสองเส้นที่มีค่าพิกัดหัวและท้าย ดังรูปด้านล่างเป็นแปลงที่ดิน DEFG ต้องการหาค่าพิกัดจุด “X” ซึ่งเป็นพิกัดศุนย์กลางพื้นที่ที่เกิดจากเส้นตรงจากมุมของแปลงที่ดินลากเป็นเส้นทแยงมุมตัดกัน

เลือกรายการคำนวณ

ที่เมนูหลักของเครื่องคิดเลขกดคีย์ F1-Set จะเห็นตัวเลือกรูปแบบการคำนวณจุดตัด (Intersection Type) เมื่อกดคีย์ “EXE” จะเห็นรายการให้เลือก 4 อย่าง ให้เลือก “Line X Line” ดังรูป กดคีย์ “EXE” จากนั้นกดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F2-IN ป้อนค่าพิกัดของเส้นตรงสองเส้น ตามโจทย์ข้างต้น กดคีย์ F6 – OK เพื่อออก

คำนวณหาจุดตัด

กลับมาที่เมนูหลักของโปรแกรม จากนั้นกดคีย์ F3 – Calc เพื่อคำนวณหาจุดตัด “X” โปรแกรมจะทวนค่าพิกัดของเส้นตรงเส้นที่ป้อนไว้ก่อนจะแสดงค่าพิกัดจุดตัด ถ้าจุดนี้อยู่บนเส้นตรงทั้ง 2 เส้น กดคีย์ F2 – PgDn เพื่อเลื่อนไปหน้าต่อไป

หน้าสุดท้ายจะเห็นค่าพิกัดจุดตัด “X” N = 1652.560, E = 1739.142

แสดงรูปตัด (Plot)

กดคีย์ F5-Plot เพื่อแสดงเส้นตรงสองเส้นและจุดตัด จอภาพเป็น dot pixel หยาบๆก็ได้ขนาดนี้พอให้เกิดจินตนาการว่าเส้นตรง 2 เส้นวางตัวในลักษณะใดและตัดกันที่ตรงไหน กดคีย์ F6-Done เพื่อออก

ตัวอย่างที่ 2 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Azimuth and Azimuth Intersection)

การกำหนดเส้นตรงโดยกำหนดจุดและอะซิมัทให้ ในกรณีนี้เส้นตรงจะยาวไม่สิ้นสุด ดังนั้นถ้าเส้นตรงที่กำหนดไม่ขนานกัน ก็มั่นใจได้เลยว่าหาจุดตัดได้แน่ (ต่างจากตัวอย่างแรกที่หาจุดตัดบนเส้นตรงทั้งสองเท่านั้น)

กำหนดเส้นตรงที่เป็น Alignment ของงานถนน เส้นที่ 1 เป็น  ผ่านจุด N: 2641990.928 , E = 231848.514  Azimuth: 35°28′ 1.7433″ เส้นที่ 2 ผ่านจุด N: 2641812.446 E: 231753.041 Azimuth: 9°12′ 20.4212″ คำนวณหาจุดตัด PI (Point of Intersection)

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Azi” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัด ไม่ลืมว่าป้อนอะซิมัทคั่นด้วยเครื่องหมายลบ  เมื่อเสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณหาจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรม กดคีย์ F3-Calc เพื่อคำนวณหาจุดตัด โปรแกรมจะทวนค่าพิกัดที่ป้อนเข้าไปก่อน กดคีย์ F2-PgDn เพื่อเลื่อนไปหน้าแสดงผลถัดไป

จะได้ค่าพิกัดจุดตัดที่เป็นจุด PI (Point of Intersection N: 2641870.013, E: 231762.371 กดคีย์ F5-Plot จะเห็นรูปร่างเส้นตรงสองเส้น พร้อมจุดตัด “I1” บนหน้าจอภาพกดคีย์ F6-Done สองครั้งเพื่ออก

ตัวอย่างที่ 3 คำนวณหาจุดตัดระหว่างเส้นตรงกับวงกลม (Azimuth and Circle Intersection)

อย่างที่ผมเกริ่นไปข้างต้นว่าเส้นตรงถ้าตัดผ่าเข้าไปในวงกลมจะได้จุดตัดสองเส้น แต่กรณีพิเศษที่เส้นตรงไปสัมผัสกับวงกลมกรณีนี้จะได้จุดตัดคือจุดสัมผัสมาจุดเดียว มาลองดูตัวอย่างแบบนี้ กำหนดให้เส้นตรงผ่านจุด N: 2642178.562, E: 231597.085 Azimuth: 161°8′ 58.2981″ กำหนดวงกลมมีจุดศูนย์กลาง N: 2641772.451, E: 231999.821  รัศมี 249.921 เมตร

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Cir” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัดและรัศมีวงกลม

ที่เมนูหลักของโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัดของเส้นตรงและป้อนค่าอะซิมัท ป้อนค่าพิกัดศูนย์กลางวงกลมพร้อมทั้งรัศมี เสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรมกดคีย์ F3-Calc เพื่อคำนวณจะได้ผลลัพธ์แสดงผลมาดังรูปด้านล่าง

สังเกตว่าตรงจุดตัดโปรแกรมจะแสดงว่าได้จุดสัมผัส Tangent มา 1 จุดคือ N: 2641691.702, E: 231763.305 กดคีย์ F5-Plot เพื่อแสดงรูปเส้นตรงและวงกลม ก็พอกล้อมแกล้มการวาดรูปร่างวงกลม ไม่มีไลบรารีของเครื่องคิดเลขต้องอาศัยวาดจุดลงไปตามเส้นรอบวงแทน  จุดสัมผัสแสดงด้วยตัวอักษร “I1” จุดศูนย์กลางวงกลมแสดงด้วยตัวอักษร “C1”

ตัวอย่างที่ 4 คำนวณหาจุดตัดระหว่างวงกลมกับวงกลม (Circle and Circle Intersection)

มาถึงตัวอย่างสุดท้าย ผมจะขอรวบรัดแสดงเฉพาะรูปหน้าจอ กำหนดโจทย์ วงกลมวงแรกมีค่าพิกัดศูนย์กลาง N: 2641210.885, E: 232480.916 รัศมี 525 เมตร วงกลมวงที่ 2 N: 2641256.635 E: 233130.568 รัศมี 250 เมตร คำนวณหาจุดตัดระหว่างวงกลมสองวงนี้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณหาจุดตัดนี้ไฟล์ที่จัดเก็บข้อมุลคือ “INTSCT.CFG

ก็ยังมีหลายซีรี่ย์สำหรับโปรแกรมเครื่องคิดเลขในชุดนี้ ก็ติดตามกันได้ต่อไปครับ

Update: โปรแกรมแปลงค่าพิกัดภูมิศาสตร์ Geographic Calculator (GeoCalc) บนเครื่องคิดเลข Casio fx-9860G II SD

Geographic Calculator

สืบเนื่องจากตอนก่อนหน้านี้ผมได้นำเสนอโปรแกรมแปลงพิกัด Geographic Calculator แบบไม่ได้ใช้ไลบรารีช่วยเรื่อง User Interface โปรแกรมมีลักษณะง่ายๆ เปิดมาเจอเมนูเลือกลักษณะที่จะคำนวณ จากนั้นโปรแกรมจะถามค่าพิกัดที่ต้องการแปลงแล้วคำนวณให้ ข้อดีคือใช้ง่าย ข้อเสียถ้าป้อนข้อมูลผิดพลาด จะย้อนกลับไม่ได้ ต้องเดินหน้าผิดไปจนจบ แล้วค่อยย้อนกลับมาอีกที

เปลี่ยนรูปแบบการติดต่อกับผู้ใช้ด้วยไลบรารี MyLib

ไลบรารี MyLib เป็นไลบรารีภาษาซีเล็กๆที่ผู้พัฒนาใช้นาม hayzel ได้เขียนไว้เพื่อใช้บนเครื่องคิดเลข Casio fx-9860G II SD ผมนำมาใช้และชอบ ทำให้มีแรงใจที่จะเขียนโปรแกรมบนเครื่องคิดเลขรุ่นเทพรุ่นนี้ได้มาหลายโปรแกรม และก็เหมือนเดิมครับว่าโปรแกรมที่ผมเขียนนั้นใช้งานได้ฟรี (Freely Usability) เพื่อใช้ในแวดวงงานสำรวจทำแผนที่ตลอดจนงานสำรวจเพื่อการก่อสร้างก็ตาม

ก็ขอตั้งชื่อโปรแกรมเล็กๆสำหรับแปลงพิกัดบนพื้นหลักฐาน WGS84 นี้ว่า “GeoCalc Extra” ก่อนอื่นสูตรที่ใช้ในการคำนวณผมใช้ไลบรารีชื่อ mgrs สามารถคำนวณแปลงพิกัดในระบบพิกัด UTM, geographic, UPS และ MGRS ได้ ขนาดไม่ใหญ่มากนัก สามารถคอมไพล์และบิวท์มาใส่เครื่องคิดเลขรุ่นนี้ได้ ทั้ง MyLib และ mgrs เป็นโปรแกรมเปิดโค้ด ฟรีทั้งคู่

ดาวน์โหลดโปรแกรม (Download)

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม GeoCalc Extra จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “GEOCALC.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มใช้โปรแกรม

ที่ “Main Menu” ของเครื่องคิดเลขเลื่อนไปหาไอคอนของโปรแกรมดังรูปด้านล่าง เมื่อกดคีย์ “EXE” แล้วจะเข้าเมนูของโปรแกรม ดังนี้

F1 – Set เลือกรายการคำนวณแปลงพิกัดระหว่าง UTM, Geographic หรือ MGRS

F2 – Src (Source) ป้อนค่าพิกัดที่ต้องการแปลงพิกัด

F3 – Calc คำนวณแปลงพิกัดพร้อมแสดงผลลัพธ์

F5 – Info แสดงเครดิตไลบรารีที่โปรแกรมใช้งาน

F6 – Exit ออกจากโปรแกรม

เลือกรายการคำนวณ (Menu)

ที่เมนูหลักกดคีย์ F1 – Set เพื่อเข้าไปเลือกรายการคำนวณ จะเห็น ระบบพิกัดเริ่มต้น (Source)   และระบบพิกัดปลายทาง (Target) ส่วนด้านล่าง MGRS Precision จะเป็นความละเอียดของระบบพิกัด MGRS (Military Grid Reference System) เลือกได้ 6 ระดับคือ 0, 2, 4, 6, 8, 10

ตัวอย่างที่ 1 แปลงค่าพิกัดจากค่าพิกัดภูมิศาสตร์ไปยังค่าพิกัดยูทีเอ็ม (Geographic to UTM)

ตั้งค่าระบบพิกัดเริ่มต้นและปลายทาง

ตั้งค่าระบบพิกัดต้นทางและปลายทางดังรูป จากนั้นกดคีย์ F6 – OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรมอีกครั้ง กดคีย์ F2 – Src เพื่อป้อนค่าพิกัดภูมิศาสตร์

ป้อนค่าพิกัดละติจูด Latitude 39°57’9.34803″N โดยการป้อน 39-57-9.34803N ค่าลองจิจูด 75°9’54.75490″W ป้อนค่า 75-9-54.75490W เสร็จแล้วกดคีย์ F6 – OK เพื่อออกไปคำนวณ

คำนวณแปลงพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F3 – Calc เพื่อคำนวณจะได้ผลลัพธ์ดังรูปด้านล่าง โปรแกรม

จะแสดงค่าพิกัดเริ่มต้นให้และค่าพิกัดปลายทางคือยูทีเอ็มให้ พร้อมทั้งบอกโซนของยูทีเอ็มให้ กดคีย์ F6 – Done เพื่อออก

ตัวอย่างที่ 2 แปลงค่าพิกัดจากค่าพิกัดยูทีเอ็มไปยังค่าพิกัด MGRS (UTM to MGRS)

กำหนดค่าพิกัดยูทีเอ็ม (UTM) ดังนี้ N: 2642783.110, E: 232030.949 UTM Zone No: 46N กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F1 – Set เพื่อเปลี่ยนรายการคำนวณ ตั้งค่าตามรูปด้านล่าง 

เสร็จแล้วกดคีย์ F6 – OK เพื่อออก

กลับมาเมนูหลักของโปรแกรมกดีย์ F2 – Src เพื่อออกป้อนค่าพิกัดยูทีเอ็มดังนี้ จากนั้นกดคีย์ F6 – OK เพื่อออก

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F3 – Calc เพื่อคำนวณ จะได้ผลลัพธ์ดังรูปด้านล่าง

ตัวอย่างที่ 3 แปลงค่าพิกัดจากค่าพิกัด MGRS ไปยังค่าพิกัดภูมิศาสตร์ (MGRS to Geographic)

กำหนดค่าพิกัด MGRS: 46QCK0907425049 ส่วนขั้นตอนจะขอรวบรัดแสดงด้วยรูปภาพ

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณโค้งแปลงพิกัดภูมิศาสตร์นี้ไฟล์ที่จัดเก็บข้อมุลคือ “GEOCALC.CFG

ก็ตามที่สัญญาไว้ว่าจะไล่รื้อโปรแกรมเก่าๆ ที่ลงมาหลายๆตอนหน้านี้ด้วยระบบติดต่อผู้ใช้ตามไลบรารี mylib ที่ผมใช้อยู่ ติดตามกันตอนต่อไปครับ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 8 โปรแกรมคำนวณสเกลแฟคเตอร์ (Scale Factor)

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 8 โปรแกรมคำนวณสเกลแฟคเตอร์ (Scale Factor)

โปรแกรมคำนวณสเกลแฟคเตอร์ (Scale Factor) สำหรับเครื่องคิดเลข Casio fx-9860 G

ช่วงนี้อยู่ในชุดซีรี่ย์โปรแกรมเครื่องคิดเลข Casio fx-9860G  ต่อไปขอนำเสนอโปรแกรมคำนวณสเกลแฟคเตอร์ (Scale Factor) ตัวโปรแกรมพัฒนาด้วยภาษาซี  ใช้เป็นโปรแกรม AddIn ดังรูปด้านล่าง

ปัญหาการคำนวณสเกลแฟคเตอร์

สเกลแฟคเตอร์ในที่นี้ผมจะขอหมายถึง Elevation Scale Factor (ESF), Grid Scale Factor (GSF) ตลอดจน Combined Scale Factor (CSF) สามารถอ่านได้จาก blog ก่อนหน้านี้ของผมได้ที่ใช้โปรแกรม Surveyor Pocket Tools มาช่วยคำนวณ ผู้อ่านอาจจะเคยสังเกตว่าจะไม่เคยเห็นโปรแกรมคำนวณสเกลแฟคเตอร์ในเครื่องคิดเลขเท่าใดนัก ในกรณีนี้คือพวกเราใช้ค่าระดับที่อิงระดับน้ำทะเลปานกลาง (แทนด้วยสัญลักษณ์ตัว “H“) กันเป็นหลัก น้ำทะเลปานกลางนี้สามารถใช้พื้นผิวจีออยด์ (Geoid) แทนได้ แต่การคำนวณหา Elevation Scale Factor เราจะต้องทราบค่าระดับที่อ้างอิงกับ Ellipsoid (แทนด้วยสัญลักษณ์ตัว “h“) ไม่ใช่เทียบกับระดับน้ำทะเลปานกลาง ความต่างระหว่างพื้นผิวจีออยด์และพื้นผิวทรงรี เราเรียกว่า Geoid Separation (แทนด้วยสัญลักษณ์ตัว “N“) ความสัมพันธ์ระหว่างสามสิ่งนี้คือ h = H + N

การหา Geoid Separation (N) จะต้องใช้ Earth Gravity Model ซึ่งก่อนหน้านี้ใช้ EGM96 ปัจจุบันใช้ EGM2008 ที่มีความละเอียดถูกต้องมากกว่า ซึ่งโมเดลต่างๆเหล่านี้จะเป็นไฟล์ที่มีขนาดค่อนข้างใหญ่จนใหญ่มาก ทำให้ไม่สามารถนำมาใช้กับเครื่องคิดเลขในระดับนี้ได้ และถ้าเขียนโปรแกรมด้วย Casio Basic ก็คงหมดสิทธิ์ครับเพราะไม่มีคำสั่งในการอ่านเขียนไฟล์

ปัญหาและทางออก

ผมพยายามใช้โค้ดภาษาซีในการอ่านไฟล์โมเดล EGM96  ด้วย egm96-f477.c โปรแกรมสามารถคอมไพล์และบิวท์ผ่าน แต่ตอนประมวลผลอ่านไฟล์ เนื่องจากต้องใช้เมโมรีเครื่องคิดเลขมาอ่านไฟล์เข้าไปเก็บในหน่วยความจำพบว่า เมโมรีไม่พอ พยายาม optimize ด้วยตัวเองหลายๆทางแต่ไม่สำเร็จ จนมาพบโดยบังเอิญในเว็ปไซต์ ตามลิ๊งค์นี้ จุดประสงค์ทางผู้พัฒนาไลบรานี้เพื่อเขียนแอพลงบนโทรศัพท์มือถือแอนดรอยด์ วิธีการคือเขาได้ Normalize ค่า geoid separation จาก EGM2008 ขนาดเต็มลงมาเหลือขนาดแถวคอลัมน์ 181 x 91 ความถูกต้องจะถูกลดทอนลง ผมสนใจเลยเอามาคอมไพล์บน Casio SDK พบว่าทำงานได้ ใช้เมโมรีเครื่องคิดเลขที่มีอยู่เพียงพอ แต่ก็จวนเจียนจะใช้หมดเหมือนกัน เอาละความคิดที่เคยจะเขียนโปรแกรมคำนวณสเกลแฟคเตอร์บเครื่องคิดเลขก็มาเป็นจริง อาจจะได้ค่าสเกลแฟคเตอร์ที่ไม่ละเอียดเท่าคำนวณจากคอมพิวเตอร์แต่ในระดับทศนิยมหกตำแหน่ง ถือว่าได้ครับ

เครดิตผู้พัฒนาไลบรารี Geoid

ต้องขอบคุณผู้พัฒนาคือ Stefan Röttger (stefan@stereofx.org) มา ณ ที่นี้ ติดตามผลงานได้ที่เว็บไซต์ http://www.open-terrain.org/index.php ไลบรานี้ใช้สัญญาอนุญาตแบบ New BSD License

เตือนสติเรื่องสเกลแฟคเตอร์

ผมชอบวาทะของอ.ดีบุญ เมธากุลชาติ ก็ขออนุญาตเอาจากสไลด์มาแสดง ณ ที่นี้ด้วย อ.ดีบุญเรียก Grid Scale Factor ว่าตัวประกอบมาตราส่วน ส่วน Elevation Scale Factor เรียกว่าตัวประกอบความสูง ได้ใจความครบถ้วนดีครับ และก็เตือนสติคนใช้แผนที่ดังนี้

Grid Scale Factor เมื่อคูณกับ Elevation Scale Factor จะได้ Combined Scale Factor ตัวประกอบตัวนี้คือตัวสำคัญที่จะนำไปคูนกับระยะทางที่วัดบนพื้นผิวโลกเพื่อทอนลงมาบนระนาบราบของแผนที่ (Grid Distance)

ใช้ไลบรารีแปลงพิกัด MGRS

เนื่องจากโปรแกรมนี้ต้องแปลงค่าพิกัดจากระบบพิกัดฉาก  UTM  บนดาตั้ม WGS84 ไปยังค่าพิกัดภูมิศาสตร์ เพื่อส่งไปให้ฟังก์ชั่นคำนวณหาค่าสเกลแฟคเตอร์ที่ต้องการทราบค่าละติจูด ดังนั้นผมใช้ไลบรารี mrgs พัฒนาโดย Howard Butler ไลบรานี้ใช้สัญญาอนุญาตแบบ MIT License

สิ่งที่โปรแกรมต้องการ

โปรแกรมสามารถคำนวณได้ 2 แบบคือแบบ Point Scale Factor คือแบบจุดเดี่ยวๆ สามารถคำนวณมาใช้แทนพื้นที่เล็กๆประมาณ 1 กม. x 1 กม. ได้ดี และรูปแบบที่ 2 คือ Line Scale Factor ใช้สำหรับพื้นที่ที่ใหญ่ขึ้นมา ใช้ค่าพิกัด 2 จุดหัวและท้าย โปรแกรมจะต้องการทราบค่าดังนี้

  1. เลือกโซนของยูทีเอ็ม (UTM  Zone) ตั้งแต่โซน 1 ถึง 60 และเลือกซีกโลก (Hemisphere)  เลือกได้สองอย่างคือเหนือหรือใต้เส้นศูนย์สูตร
  2. ค่าพิกัดและค่าระดับของจุดที่ต้องการทราบค่าสเกลแฟคเตอร์ ต้องการค่าพิกัดเหนือใต้ในระบบยูทีเอ็มและค่าระดับที่อ้างอิงเหนือระดับน้ำทะเลปานกลาง (Orthometric Height above Meas sea level)

ในการคำนวณตัวประกอบความสูง (Elevation Scale Factor) โปรแกรมจะนำค่าความสูงเหนือระดับน้ำทะเลปานกลางมาคำนวณเป็นค่าระดับความสูงเทียบกับระดับทรงรี (Ellipsoid Height) ที่เราไม่สามารถนำค่าระดับความสูงเหนือระดับน้ำทะเลปานกลางมาใช้คำนวณเพราะว่า ตัวอย่างเข่นในประเทศไทย ค่าระดับน้ำทะเลปานกลางจะอยู่ใต้ทรงรีประมาณ 6-42 เมตร ถ้านำไปคำนวณจะได้ค่าตัวประกอบความสูงที่ไม่ถูกต้อง

ดาวน์โหลดโปรแกรม

ไปที่หน้าดาวน์โหลด Download มองหาโปรแกรม Scale Factor สำหรับเครื่องคิดเลข Casio fx-9860 G II SD ดาวน์โหลดไฟล์โปรแกรมชื่อ SFACTOR.G1A ติดตั้งลงเครื่องคิดเลข

เริ่มต้นใช้งาน

เมื่อเมนูหลัก (Main Menu) เมื่อเลื่อนลูกศรมาที่ไอคอนโปรแกรมกดคีย์ “EXE” จะเข้ามาในโปรแกรมดังรูปด้านล่าง จะเห็นเมนูด้านล่างเรียงรายกันไป ได้แก่

Sett- Setting (ตั้งค่าโซนยูทีเอ็มและเลือกซีกโลก)

PSF – Point Scale Factor ( คำนวณหาค่าสเกลแฟคเตอร์ของจุดเดี่ยว

LSF – Line Scale Factor (คำนวณหาค่าสเกลแฟคเตอร์เฉลี่ยจากจุดสองจุด)

Info – Information (แสดงไลบรารีที่ผมใช้งานอยู่ ให้เครดิตแก่พัฒนา)

Exit – Exit Program (ออกจากโปรแกรม)

ตั้งค่ายูทีเอ็ม (UTM Settings)

ทีเมนูหลักกดคีย์ F1 – Sett จะเห็นหน้าตาจอภาพเครื่องคิดเลขดังนี้

เนื่องจากโปรแกรมบนเครื่องคิดเลขมีข้อจำกัดมากๆ ผมไม่สามารถใส่ระบบพิกัดได้มากเหมือน Surveyor Pocket Tools จึงจำกัดแค่ datum “WGS84” เท่านั้น สำหรับประเทศไทยก็เลือกโซนได้สองโซนคือ 47 และ 48 ตัวอย่างที่จะแสดงต่อไปเลือกเป็นโซน 47 ส่วนซีกโลก (Hemisphere) เลือกเป็น “North” กดคีย์ F6 – OK

 

คำนวณ Point Scale Factor

ตัวอย่างที่คำนวณต่อไปจะยกมาจากตัวอย่างที่แสดงในบล็อกของ Surveyor Pocket Tools เพื่อเปรียบ

เทียบผลลัพธ์กันได้ กลับมาที่เมนูหลักกดคีย์ F1-Sett ป้อนค่าพิกัด N=1499662.173, E=683068.285, H=0.791 

เสร็จแล้วกดคีย์ F1 – Calc เพื่อคำนวณสเกลแฟคเตอร์ของจุดนี้

ผลลัพธ์จะแสดงออกมาดังรูปด้านล่าง โปรแกรมจะแสดงค่าพิกัดและค่าระดับมาให้ จากนั้นแสดงค่าละติจูดและลองจิจูด แสดงความสูงเทียบกับทรงรี = -29.598 m กดคีย์ F2-PgDn เพื่อเลื่อนไปดูหน้าต่อไป

จะเห็นค่า Geoid Separation หรือ Geoid Height = -30.389 m และได้ค่า Elevation Scale Factor = 1.00000465, Grid Scale Factor = 1.00001458 สุดท้ายค่า Combine Scale Factor = 1.00001924 ลองเทียบกับค่าที่คำนวณด้วย Surveyor Pocket Tools ดังนี้

ค่า Combined Scale Factor  = 1.0000192644 ต่างกันที่ทศนิยมแปด ผมถือว่าใช้ได้เพราะเราใช้แค่ทศนิยมที่หกก็เพียงพอแล้ว ความต่างที่แตกต่างจากที่ผมเคยบอกไปแล้วคือมาจากค่า Ellipsoid height ที่คำนวณจากโปรแกรมเครื่องคิดเลขได้ -29.598 เมตร ส่วนค่าความสูงทรงรีที่ได้จาก Surveyor Pocket Tools ได้ค่า -29.776 เมตร ต่างกันประมาณ 20 ซม.

คำนวณหาค่า Line Scale Factor

จะแสดงไดอะแกรมของการคำนวณค่าสเกลแฟคเตอร์เฉลี่ยดังรูปด้านล่าง

ที่โปรแกรมเครื่องคิดเลขกลับมาที่เมนูหลัก

กดคีย์ F3-LSF จะเห็นหน้าตาโปรแกรมดังรูปด้านล่าง ป้อนค่าพิกัดจุดที่ 1 และกดคีย์ F2-Next เพื่อไปป้อนจุดที่ 2

พร้อมแล้วกดคีย์ F1-Calc ต่อไปจะได้ผลลัพธ์ดังนี้ เลื่อนลงไปดูหน้าต่อไปก็กดคีย์ F2-PgDn

สรุปแล้วจะได้ค่าเฉลี่ย Combined Scale Factor = 1.00082320

เปรียบเทียบกับค่าที่ได้จาก Surveyor Pocket Tools เท่ากับ 1.0008232302 เช่นเคยค่าต่างกันที่ทศนิยมแปด สามารถนำไปใช้งานได้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณหาสเกลแฟคเตอร์นี้ไฟล์ที่จัดเก็บข้อมุลคือ “SFACTOR.CFG

เครดิตไลบรารี

ที่เมนูหลักกดคีย์ F5-Info จะเห็นเครดิตดังรูปด้านล่าง

โปรแกรมนี้มีขนาดใหญ่กว่าโปรแกรมอื่นๆก่อนเกือบสองเท่าเพราะว่าใช้ไลบรารีอื่นๆสามไลบรารีด้วยกัน ก็ติดตามชุดโปรแกรมเครื่องคิดเลข Casio fx-9860 G กันต่อไปครับ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 7 โปรแกรมคำนวณโค้งราบ (Horizontal Curve)

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 7 โปรแกรมคำนวณโค้งราบ (Horizontal Curve)

โปรแกรมคำนวณโค้งราบ HCurve สำหรับเครื่องคิดเลข Casio fx-9860 G

ช่วงนี้อยู่ในชุดซีรี่ย์โปรแกรมเครื่องคิดเลข Casio fx-9860G ที่ใช้ไลบรารี MyLib ต่อไปขอนำเสนอโปรแกรมคำนวณโค้งราบ (Simple Horizontal Curve) ตัวโปรแกรมพัฒนาด้วยภาษาซี  ใช้เป็นโปรแกรม AddIn ดังรูปด้านล่าง

โปรแกรม HCurve คำนวณโค้งราบ (Simple Horizontal Curve)

องค์ประกอบของโค้งราบ (Elements of Horizontal Curve)

องค์ประกอบของโค้งราบ (Elements of Curve)

คำนิยาม (Abbrivations)

R – Radius คือรัศมีของโค้งราบ รัศมีจะตั้งฉากกับเส้นสัมผัสวงกลมเสมอ

PC –  Point of Curvature คือจุดเริ่มต้นโค้ง บางครั้งเรียกว่า BC (beginning of curve) หรือ TC (tangent to curve)

PI – Point of Intersection คือจุดตัดของ tangent 2 เส้น

PT – Point of Tangency คือจุดสิ้นสุดโค้ง บางครั้งเรียกว่า EC (end of curve) หรือ CT (curve to tangent)

POC – Point of Curve คือจุดบนโค้งในตำแหน่งใดก็ตาม

L – Length of Curve คือความยาวโค้งวัดตามโค้งจากจุด PC ไปจุด PT

T – Tangent Distance หรือ Tangent Length คือเส้นตรงที่สัมผัสโค้งวัดจากจุด PC ไปจุด PI หรือวัดจาก จุด PI ไปจุด PT

คุณสมบัติของโปรแกรม

โค้งราบ (Simple Horizontal Curve) ในงานสำรวจใช้ในงานสำรวจเพื่อการก่อสร้าง (Construction Survey) โดยที่ให้ตำแหน่ง (Setting out) งานก่อสร้างถนน ทางรถไฟ ผู้ใข้ป้อนข้อมูลองค์ประกอบของโค้งราบที่โปรแกรมต้องการจนครบ โปรแกรมสามารถคำนวณองค์ประกอบโค้งที่เหลือและสามารถคำนวณค่าพิกัดบนเส้น Center line หรือกระทั่งสามารถ offset ไปด้านซ้ายหรือด้านขวาก็ได้เช่นเดียวกัน สามารถคำนวณค่าพิกัดแบบทุกช่วงระยะ (interval) ให้ค่าพิกัดออกมาเป็นบัญชีรายการได้ โปรแกรมนี้ออกแบบและพัฒนามาเพื่อช่วยช่างสำรวจให้สามารถนำโปรแกรมไปตรวจสอบข้อมูลโค้งราบได้ด้วยตัวเอง

ในปัจจุบันการวางโค้งในสนาม ไม่ได้ถูกจำกัดเช่นสมัยแต่ก่อนเนื่องจากเครื่องมือเช่นอุปกรณ์กล้องสำรวจ Total Station ทันสมัยสามารถให้ตำแหน่งจากค่าพิกัดได้เลย ไม่เหมือนสมัยแต่ก่อนที่มีแต่กล้อง Theodolite และเทปวัดระยะ ที่การวางโค้งต้องอาศัยการตั้งกล้องที่จุด PC หรือ PI หรือแม้กระทั่ง PT แล้วทำการเปิดมุมและดึงเทปไปตามคอร์ด ปัจจุบันไม่ต้องทำอย่างนั้นแล้ว สามารถตั้งกล้องที่ไหนก็ได้ที่สะดวก

ก็เนื่องจากความทันสมัยของกล้อง Total Station นี้เอง ในอนาคตไม่ไกลการโอนข้อมูลจากกล้องไปที่ออฟฟิศหรือจากออฟฟิศไปที่กล้องจะเป็นเรื่องธรรมดามากผ่านทางออนไลน์ ซึ่งเรื่องนี้ข้อดีก็มีมากมาย แต่ข้อเสียที่เกิดขึ้นคือช่างสำรวจจะมีเวลาใช้สมองคิดเรื่อง geometry น้อยลงเพราะโปรแกรมบนกล้องทำให้หมด ทำให้ขาดการฝึกฝนทักษะในด้านนี้ ซึ่งผมคิดว่าอาจจะทำให้คุณภาพของบุคลากรด้านสำรวจของเราด้อยลงในอนาคต ดังนั้นการใช้เครื่องคิดเลขมาช่วยอาจจะช่วยฝึกฝนทักษะได้บ้างในจุดนี้

ดาวน์โหลดโปรแกรม (Download)

ไปที่หน้าดาวน์โหลด มองหาโปรแกรมคำนวณโค้งราบ HCurve  จะได้ไฟล์ชื่อ “HCURVEEX.G1A” เมื่อดาวน์โหลดมาแล้วโอนเข้าเครื่องคิดเลขผ่านทางโปรแกรม FA-124 หรือ SD Card

ใช้งานฟรี (Freely Usable)

ก็ยังเหมือนเดิมไม่ว่าจะโปรแกรมบนเครื่องคอมพิวเตอร์หรือบนเครื่องคิดเลข คือให้ใช้งานได้ฟรี

เริ่มต้นใช้งาน

ที่เครื่องคิดเลขกดคีย์ “Menu” เพื่อเข้าสู่หน้า AddIn หรือ  Main Menu ของเครื่องคิดเลข เลื่อนลูกศรลงไปด้านล่างๆจะเห็นไอคอนของโปรแกรมดังรูปด้านล่าง กดคีย์ “EXE” เพื่อเข้าสู่โปรแกรม

จะเห็นหน้าเมนูหลักของโปรแกรมดังนี้

ก็เหมือนโปรแกรมคำนวณโค้งดิ่ง (VCurve) ที่ผ่านมาคือมีเมนูย่อยเรียงจากซ้ายไปขวา สัมพันธ์กับการกดคีย์ F1-F6 เรียงกันไป

เมนูหลัก (Main Menu)

F1 (Know) – Known สำหรับป้อนจุดที่ทราบค่า station และค่าพิกัด

F2 (Angl) – Angle สำหรับป้อนที่เกี่ยวกับมุมเช่น back tangent azimuth และมุมเบี่ยงเบน (Deflection Angle) ตลอดจนถึงทิศทางของโค้ง (Curve Direction)

F3 (Elem) – Elements สำหรับป้อนองค์ประกอบของโค้งเช่นรัศมีหรือความยาวโค้าง

F4 (Info) – Information สำหรับคำนวณหาข้อมูลพื้นฐานของโค้งทั้งหมด

F5 (Calc) – Calculate สำหรับคำนวณหาค่าพิกัดโค้งได้หลายรูปแบบเช่นกำหนดสถานี ระยะ offset ตลอดจนคำนวณจากช่วงระยะทาง (interval) ที่กำหนดให้

F6 (Exit) – Exit ออกจากโปรแกรม

ตัวอย่างการคำนวณโค้งราบ (Example)

มาดูวิธีการใช้งานจากตัวอย่างจะเข้าใจง่ายที่สุด

เลือกและป้อนสถานีที่ทราบและค่าพิกัด (Known Station and Know Coordinates)

ที่เมนูหลักกดคีย์ F1 (Know) แก้ไขค่าตามโจทย์ตัวอย่างที่ 1 ดังนี้

ในที่นี้สถานีและค่าพิกัดกำหนดที่จุด PI ทั้งคู่ เมื่อป้อนค่าเสร็จแล้วกดคีย์ F6 (OK) เพื่อออก

เลือกป้อนมุมอะซิมัทและมุมเบี่ยงเบน(Known Tangent and Deflection Angle)

ที่เมนูหลักกดคีย์ F2 (Angl) เพื่อเลือกอะซิมัทของเส้นสัมผัสที่ทราบค่าและมุมเบี่ยงเบน ตลอดจนป้อนทิศทางของโค้งราบว่าเลี้ยวซ้ายหรือเลี้ยวขวา จากตัวอย่างเลือกและป้อนค่าดังนี้

เสร็จแล้วกดคีย์ F6 (OK) เพื่อจัดเก็บค่าและออก

ป้อนองค์ประกอบโค้งราบ (Elements of Curve)

ที่เมนูหลักกดคีย์ F3 (Elem)  เลือกว่าจะป้อนค่ารัศมีโค้ง (Radius) หรือว่าความยาวโค้ง (Length of Curve) ในที่นี้เลือกรัศมีโค้งและป้อนค่า 201.950 เมตร

คำนวณหาข้อมูลพื้นฐานโค้งราบ (Curve Information)

ที่เมนูหลักกดคีย์ F4 (Info)

แสดงองค์ประกอบของโค้งและข้อมูลพื้นฐาน ค่าพิกัดของจุด PC, PI และ PT ตลอดจนจุดศูนย์กลางของโค้ง เนื่องจากจอภาพมีขนาดเล็กดังนั้นใช้การกดคีย์ F1 (PgUp) หรือ F2 (PaDn) เพื่อเลื่อนดูหน้าก่อนหน้านี้หรือหน้าถัดไป กดคีย์ F6 (Done) เพื่อออก

การคำนวณโค้งราบ (Horizontal Curve Calculation)

ที่เมนูหลักกดคีย์ F5 (Calc)จะเห็นเมนูย่อยอีกเมนูคือเมนูสำหรับคำนวณโค้งราบ

จะมีเมนูดังนี้

F1 (Sta) – Station คำนวณหาค่าพิกัดเมื่อกำหนดสถานี

F2 (INT) – Interval คำนวณหาค่าพิกัดสถานีเมื่อกำหนดช่วงระยะทาง (Interval) ให้

F4 (Info) – Information คำนวณข้อมูลพื้นฐานโค้งราบ โดยที่ผลลัพธ์เหมือนกับเมนู Info บนเมนูหลัก

F5 (Plot) – Plot Curve วาดรูปร่างโค้งราบ

F6 (Done) ออกจากเมนูคำนวณโค้งราบ

คำนวณหาค่าพิกัดเมื่อกำหนดสถานี (Calculate Coordinates of Station)

ที่เมนูคำนวณโค้งราบกดคีย์ F1 (Sta) จะมีไดอะล็อกให้ป้อนสถานี ตัวอย่างนี้ต้องการทราบค่าพิกัดของสถานี 17+200 โดยที่ offset ไปด้านซ้าย 8 เมตร ป้อนข้อมูลดังรูป ถ้าไม่ต้องการคำนวณหรือเก็บข้อมูลที่ป้อนก็กดคีย์ F5 (Canc) เพื่อ Cancel ออกไป หรือต้องการเก็บค่าแต่ไม่คำนวณก็กดคีย์ F6 (OK) ออกไป ถ้าต้องการคำนวณก็กดคีย์ F1 (Calc) จะได้ผลลัพธ์ดังรูปถัดไป กดคีย์ “EXE” เพื่อออก

คำนวณหาค่าพิกัดสถานีแบบกำหนดช่วงระยะทาง (Interval Calculation)

ที่เมนูคำนวณโค้งกดคีย์ F2 (INT) ในที่นี้ต้องการคำนวณทุกๆระยะ 25 เมตร โดยคำนวณในแนว Center Line (ไม่มีการ offset ไปซ้ายหรือขวา) กดคีย์ F1 (Calc) เพื่อคำนวณ

จะได้ผลลัพธ์ เริ่มตั้งแต่ PC (17+151.314), Sta 17+175, Sta 17+200, Sta 17+225, Sta 17+250, Sta 7+275, Sta 17+300 และสุดท้ายที่ PT (17+313.794) กด F1 (PgUp) เพื่อเลื่อนไปหน้าก่อนหน้านี้ และกด F2 (PgDn) เพื่อไปดูหน้าถัดไป กด F6 (Done)

 

วาดรูปโค้งราบ (Plot Curve)

จากเมนูคำนวณโค้งราบ กดคีย์ F5 (Plot) จะมีเมนูย่อยลงไปอีกสำหรับย่อ F1 (Z-) ขยาย F2 (Z+) ดึงรูปไปด้านซ้าย F3 (Lt) ดึงรูปไปด้านขวา F4 (Rt) กดคีย์ F5 (>) เพื่อไปเมนูย่อยอีกเมนูด้านขวา เมนูด้านขวาจะมีดึงรูปลง F1 (Dn) หรือดึงรูปขึ้น F2 (Up) กดคีย์ F6 (Exit) เพื่อออกจากเมนู

ก็อย่างว่าเครื่องคิดเลขรุ่นนี้เป็นจุดภาพ (pixel) บนจอภาพ ไม่ใช่จอภาพแบบโทรศัพท์มือถือในปัจจุบันที่มีความละเอียดสูง ข้อเสียคือแสดงภาพความละเอียดสูงไม่ได้ แต่ข้อดีไม่เปลืองแบตเตอรี สังเกตว่าแค่ถ่าน AAA สามก้อนใช้กันจนลืมครับ ดังนั้นก็ดูรูปโค้งพอให้เกิดจินตนาการว่าโค้งวางตัวในลักษณะไหน เวลาไปอยู่หน้างานจะได้วางภาพในใจได้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณโค้งราบนี้ไฟล์ที่จัดเก็บข้อมุลคือ “HCVEX.CFG

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่

การเล็งสกัดย้อน (Resection) และความเป็นมา

ในที่สุดก็มาถึงตอนที่ 5 ตอนที่ผมใช้เวลามากที่สุดในการ implement อัลกอริทึ่มที่ใช้คำนวณปัญหา Resection จาก 3 จุดที่กำหนด (Three Points Resection Problem) เป็นที่ทราบกันดีว่าการคำนวณ Resection นั้นนักคณิตศาสตร์ได้คิดค้นกันมาหลายร้อยปีแล้ว มีอัลกอริทึ่มรวมๆกันไม่น้อยกว่า 500 อัลกอริทึ่ม แต่บางอัลกอริทึ่มนั้นอายุเก่าแก่มากใช้การคำนวณหาด้วยการวาดลงบนกระดาษ ถ้าจะคัดออกมาจริงๆที่ใช้กันในปัจจุบันมีประมาณ 18 อัลกอริทึ่มหลักๆ และสามารถนำมา implement เป็นโปรแกรมในคอมพิวเตอร์ได้ ก่อนจะไปต่อกันลึกๆมาดูกันว่า Resection คืออะไร

การเล็งสกัดย้อน(Resection) คือการวัดพิกัดจุดตั้งกล้องจากสถานีที่ทราบค่าพิกัด 3 สถานี ตามตัวอย่างได้แก A, B และ C และวัดมุมราบคือมุม α และ β ตามลำดับ

ผมคนรุ่นเก่ายังทันเครื่องมือวัดมุม Sextant ผมทัน Sextant นี้ในช่วงทำงานใหม่ๆ โดยที่ลงเรือไปในทะเลกับพี่ๆช่างสำรวจของกรมเจ้าท่า ตอนนั้นเพิ่งเรียนจบมาใหม่ ยุคนั้น GPS/GNSS ยังไม่เป็นที่รู้จัก การวัดตำแหน่งของเรือสำรวจใช้เครื่องมือ Sextant ที่อาศัยหลักการของ Resection มาประยุกต์ใช้ บนเรือสำรวจจะมีเจ้าหน้าที่ 2 คน คนแรกจะส่องสถานี A และ B เพื่อวัดมุม α และคนที่สองจะส่องสถานี B และ C เพื่อวัดมุม β สองคนนี้ตามหลักการแล้วต้องขี่คอกันแต่จริงๆคงไม่มีใครทำเพียงแต่นั่งใกล้ๆกัน การใช้ Sextant วัดตำแหน่งเรือต้องอาศัยความชำนาญอย่างสูง เพราะเรือไม่อยู่นิ่งกับที่เพราะคลื่มลม จะปะทะให้เคลื่อนไหวตลอดเวลา

เมื่อการวัดมุมเสร็จสิ้นลงทั้งสองคนจะจดค่ามุม ∝ และ ∅ พร้อมๆกัน การใช้ Sextant ควบคู่ไปกับกับใช้เครื่องมือวัดความลึกของท้องน้ำจำพวก Echo sounder งาน post processing ในออฟฟิศได้แต่การนำค่ามุม α และ β มาคำนวณหาค่าพิกัดแตละจุด จากนั้นก็จัดทำแผนที่แสดงความลึกของแม่น้ำหรือทะเลในบริเวณที่ทำการสำรวจ ถึงแม้กระนั้นเครื่องมือ Sextant จะให้ค่าความละเอียดด้านมุมไม่ดีนัก แต่ค่าพิกัดที่ได้สมัยนั้นก็เพียงพอสำหรับงานในทะเลหรือแม่น้ำ

หัวข้อต่อๆไปจะกล่าวถึงที่ไปที่มาของสูตรที่ผมใช้สำหรับเครื่องคิดเลข fx-9860G ถ้าผู้อ่านไม่สนใจก็ข้ามไปที่การใช้โปรแกรมเครื่องคิดเลขด้านท้ายๆเลยครับ

หลักการคำนวณ Resection

อัลกอริทึ่มที่ผมกล่าวไปนั้นตั้งแต่ยุคอดีตกาลนั้นมากกว่า 500 อัลกอริทึ่ม แต่ส่วนใหญ่แล้วอาศัยหลักการคล้ายๆกันคือใช้หลักวงกลมสามวงตัดกันที่จุด P วงแรกจะลากผ่านจุด A-P-B วงที่สองลากผ่านจุด B-C-P วงที่สามลากผ่าน C-P-A ดังรูปด้านล่าง

ภาวะเอกฐาน (Singularity) ที่อัลกอริทึ่มล้มเหลว

ผมขอยืมคำแปล Singularity ที่แปลว่าภาวะเอกฐานจากเรื่องหลุมดำในทฤษฎีฟิสิกส์ควอนตัมหน่อย เพราะมันได้ใจความคือภาวะที่ทฤษฎีทางคณิตศาสตร์ล้มเหลว คือเหมือนกับพลัดตกลงไปในหลุมดำประมาณนั้น

การคำนวณ Resection ที่ใช้วงกลมสามวงมาตัดกันดังรูปด้านบน แต่จะเกิดอะไรขึ้น ถ้าจุดทั้ง 4 จุดนี้อยู่บนวงกลมวงเดียวกัน ก็หมายความว่าวงกลมสามวงนั้นจะซ้อนทับกันทั้งสามวง จนไม่สามารถหาจุดตัดกันได้ ดังนั้น Resection ไม่มีสูตรหรืออัลกอริทึ่มไหนในบรรณพิภพนี้ที่สามารถคำนวณได้บนภาวะเอกฐาน

ภาวะเอกฐานเสมือน (Pseudo Singularity)

ภาวะเอกฐานเสมือนเป็นสภาวะที่จุด P มาอยู่บนเส้นตรงระหว่าง A-B หรือ B-C หรือ A-C ด้านล่างจะเป็นกรณีจุด P อยู่บนเส้นตรงระหว่างจุด B และ C จะทำให้มุม β มีค่ากับ π เรเดียน (หรือเท่ากับ 180 องศา) หรือถ้าขยับจุด P ให้เลยออกจากจุด B แตยังอยู่ในแนวเส้นตรง ในกรณีนี้จะได้ มุม β = 0

ภาวะเอกฐานเสมือนนี้สูตรหลายๆสูตรไม่สามารถหาค่าได้เช่นสูตร Tienstra Method

อัลกอริทึ่มสมัยใหม่ (Modern Algorithm)

เท่าที่ผมทราบในปัจจุบันตัวที่ทำให้เกิดสูตรคณิตศาสตร์ใหม่ๆมาจากวงการ Robot ที่ต้องการให้ค่าพิกัดของหุ่นยนต์ในการเคลื่อนไหวได้แม่นยำ เนื่องจากหุ่นยนต์ทำงานอยู่ในอาคาร จึงทำให้ระบบให้ค่าพิกัด GNSS ไม่สามารถนำมาใช้งานได้ หุ่นยนต์ในที่นี้ไม่ได้หมายถึงหุ่นยนต์ที่ติดตั้งแบบอยู่กับที่ในโรงงานนะครับ แต่เป็นหุ่นยนต์ที่สามารถเคลื่อนไหวได้อิสระ ตัวอย่างง่ายๆได้แก่การแข่งขันหุ่นยนต์ของนักศึกษาในอินดอร์ อดึตกาลสูตรเหล้านี้มาจากนักคณิตศาสคร์ แต่สำหรับสูตรสมัยใหม่เนื่องจากความต้องการใช้งานในวงการหุ่นยนต์ ทำให้คนที่คิดค้นสูตรสมัยใหม่กลายเป็นวิศวกรไฟฟ้าหรือวิศวกรเครื่องกล เท่าที่ผมศึกษางานวิจัยในเบื้องต้นผมสนใจงานของ

    1. A New Three Object Triangulation Algorithm for Mobile Robot Positioning โดย Vincent Pierlot and Marc Van Droogenbroeck ทั้งสองท่านจบวิศวกรไฟฟ้า งานวิจัยนี้มีโค้ดภาษา C ด้วย แต่เนื่องจากลิขสิทธิ์ที่ระบุให้ใช้ในวงการศึกษาหรือใช้งานส่วนตัวเท่านั้น ผมจึงไม่สามารถนำโค้ดมาใช้งานได้เพราะยังกำกวม ความจริงงานทั้ง 2 ท่านได้รวบรวมอัลกอริทึ่มรวมทั้งของตัวเองด้วยทั้งหมด 18 อัลกอริทึ่มและ implement มาเป็นโค้ด พร้อมทั้งวัด benchmark ว่าใค้ดใครเร็วที่สุด ก็ตามคาดหมายโค้ดที่ทั้งสองท่านคิดค้นมานั้นเข้าวิน แต่สำหรับผมแล้วความต่างมันหนึ่งในพันส่วนของวินาทีอาจจะจำเป็นสำหรับงานให้ตำแหน่งหุ่นยนต์ที่ต้องมีการคำนวณตำแหน่งแบบ real time แต่สำหรับงานสำรวจในภาคสนามความจำเป็นกลับต่างออกไป
    2. New Method That Solves the Three-Point Resection Problem Using Straight Lines Intersection โดย Josep M. Font-Llagunes and Joaquim A. Batlle ผมชอบความคิดของสองท่านนี้ดูจากโพรไฟล์แล้วจบวิศวกรเครื่องกล แต่เนื่องจากเอกสารเข้าใจยากไปนิด ผมกลับใช้เวลาแกะอัลกอริทึมโดยใช้เวลาพอสมควรกว่าจะออกมาเป็นโค้ดได้ โปรแกรมสามารถคำนวณในสภาวะเอกฐานเสมือนได้

หลักการคำนวณโดยย่อ

ผมไม่มีเวลาที่จะศึกษาสูตรในเบื้องลึกให้กระจ่างมากนั้นแต่เน้น implement มาเป็นโค้ดภาษา C ดังนั้นความเข้าใจจึงอยู่ในระดับผิวเผิน ต่อไปผมจะบอกเล่าสิ่งที่ผมเข้าใจแบบจำกัดจำเขี่ย เราจะมาเริ่มต้น สมมติว่าตอนนี้ถ้าทราบค่าพิกัด P แล้วเราสามารถหาค่าอะซิมัทจากสถานี A, B และ C ไปยังจุด P ได้ง่ายๆ ตามรูปด้านล่าง

ค่าอะซิมัทของสถานีที่ทราบค่าพิกัด

1.คำนวณหาค่าอะซิมัทโดยประมาณ (Θ)

แต่ในชีวิตจริงค่าพิกัด P เป็นสิ่งที่เรายังไม่ทราบดังนั้นสูตรคำนวณนี้จะมีการหาค่าโดยประมาณก่อน Θ = θ – โดย  คือค่าเบี่ยงเบนไปจากค่าจริงจากที่เราประมาณ ถ้าทุกๆเส้นเบี่ยงเบนไป  เราสามารถลากเส้นไปตัดกันเป็นรู)สามเหลี่ยมเล็กๆ แต่ถ้า  ที่ประมาณการณ์ไว้มีขนาดเบี่ยงเบนไปมาก ก็จะได้ขนาดสามเหลี่ยมนี้ใหญ่ขึ้น สามเหลี่ยมนี้ทางผู้คิดค้นเรียกว่า error triangle จุดตัดแทนที่ด้วย PAB, PBC และ PAC

2.คำนวณหาค่าพิกัดของ Error Triangle

ค่าพิกัดของจุดตัด P นี้สามารถคำนวณได้จากสูตร

โดยที่ mA = cot(Θ), mB = cot(Θ – α) และ mC = cot(Θ – α -β) ไม่ลืมว่า Θ คือค่าอะซิมัทโดยประมาณ

3.คำนวณหาค่าพิกัดของ Centers Triangle

ถ้าจากจุด P ลากเส้นตรงไปหาสถานีที่ทราบค่าพิกัดแล้วแบ่งครึ่งลากเส้นตั้งจาก เราจะได้สามเหลี่ยมอีกชุดหนึ่งเรียกว่า centers triangle  และเป็นสามเหลี่ยมคล้ายสามเหลี่ยม error triangle ดังนั้นความสัมพันธ์ด้านมุมและระยะระหว่างสามเหลี่ยมสองรูปนี้สามารถคำนวณได้ ดังนั้นค่าพิกัดของ centers triangle สามารถคำนวณหาค่าพิกัดจุดตัด CAB, CBC และ CAC ได้จากสูตรดังต่อไปนี้

4.คำนวณมุมเบี่ยงเบน

ค่าเบี่ยงเบนเมื่อคำนวณมาได้แล้วสามารถนำไปบวกหรือลบกับค่าอะซิมัทประมาณการในครั้งแรกจะได้ค่าอะซิมัทที่ถูกต้อง

สามารถคำนวณสมการ (9) จากระยะทางแต่ละด้านของ error triangle และ centers triangle เช่นตัวอย่าง |δθ| = arcsin(ระยะทางระหว่างจุด PAB– PBC / ระยะทางจุด CAB– CBC )

หรือในสมการ (10) สามารถใช้พื้นที่ของสามเหลี่ยมสองรูปนี้ได้

5.คำนวณหาเครื่องหมายมุมเบี่ยงเบน

ก่อนหน้านี้ที่แสดงค่าที่คำนวณได้ในสมการ (9) และ (10) จะเห็นว่าติดเครื่องหมาย absolute ไว้คือยังไม่ได้คิดเครื่องหมาย ส่วนเครื่องหมายมุมเบี่ยงเบนหาได้ดังนี้

ทางผู้พัฒนาแสดงทิศทางของ error triangle เมื่อเทียบ center triangle ตามเครื่องหมายของ error triangle ดังนี้

อาจจะดูยากไปนิดเป็นการคูณไขว้กัน ดูตัวอย่างเพื่อความง่าย

sign = (xPAC-xPBC)*(yCAC-yCBC) – (xCAC-xCBC)*(yPAC-yPBC)

ค่าของ  sign จะออกมาเป็นบวกหรือเป็นลบ แล้วจะเอาเครื่องหมายนี้ไปใส่ให้สมการในข้อต่อไป

6.คำนวณหาอะซิมัทที่ถูกต้อง

สมการ θ=Θ +sign(dθ)

7.คำนวณหาพิกัดของจุดตัด Resection

ถ้าจุดตัดไม่ตกหลุมดำ ก็สามารถคำนวณหาจุดตัดได้จาก 1 ใน 3 สมการ ของสมการ (1), (2) หรือ (3) เช่นตัวอย่าง

mA = cot(θ)
mB = cot(θ – α)
xP = (mA x xA – mB x xB – yA + yB) / (mA – mB)
yP = mA x (xP – xA) + yA

การคำนวณเมื่อจุดตัดตกภาวะเอกฐานเสมือน

จะมี 3 กรณีคือ

1) ค่า α = 180 หรือ α = 0

2)ค่า β = 180 หรือ β = 0

3)ค่ามุม α+β = 180 หรือ α+β = 0

จากการคำนวณในข้อ 3 จะสังเกตในสูตร (5) จะมีตัวคูณด้วย cot(α) อยู่ ในกรณีนี้จุดตัด P อยู่บนเส้นตรงระหว่างจุด A และ B ดังนั้นมุม α = 180 องศาจะทำให้ cot(α) ไม่สามารถคำนวณได้เพราะค่าเป็นอนันต์ (infinity)  ในเคสนี้เราจะไม่คำนวณหาจุด CAB เพราะหาไม่ได้นั่นเอง แต่จุด CBC และ CAC ก็ยังหาได้ปกติ ดังนั้นในกระบวนการสุดท้ายค่าพิกัดของจุด P สามารถคำนวณได้จากการใช้สมการอีก 2 สมการคือสมการ (2) และ (3)

ไม่ใช้สมการ (1) เพราะมีค่า (mA – mB)  = 0 ทำให้ห่าค่า xP ไม่ได้

ข้อสังเกต สามารถลากวงกลมได้แค่ 2 วงเท่านั้นคือวงกลม A-P-C และ B-P-C ส่วนอีกวงลากไ่ม่ได้เพราะว่า A-P-B เป็นเส้นตรง

ดาวน์โหลด (Download) โปรแกรมสำหรับเครื่องคิดเลข fx-9860G

ไปที่หน้าดาวน์โหลดมองหาโปรแกรม Resection เมื่อดาวน์โหลดมาแล้วจะได้ไฟล์ “RESCTION.G1A” ใช้โปรแกรม FA-124 ทำการโอนโปรแกรมเข้าเครื่องคิดเลข (ดูโพสต์เก่าได้วิธีการนี้) จะเห็นไอคอนปรากฎที่หน้า AddIn ดังรูป

กรณีที่ 1 ตัวอย่างงานรังวัดในงานสำรวจทั่วไป (Survey Engineering Example)

กำหนดค่าพิกัดของสถานี A, B และ C ดังนี้

วัดค่ามุม ∝ และ ∅ จากกล้อง total station ได้ดังนี้ ∝= 40°35’22.11“ และค่ามุม ∅ = 9°18’31.84“ ที่ไอคอนโปรแกรมกดคีย์ “EXE” เข้าไปป้อนค่าพิกัดสถานีทั้งสามดังนี้

จากนั้นป้อนมุมภายใน

โปรแกรมจะคำนวณหาค่าพิกัดของจุดตัด โดยที่แจ้งสถานะมาก่อนว่าคำนวณได้ Resection Solved…

กรณีที่ 2 ตัวอย่างงานที่จุดตัดตกอยู่ในภาวะเอกฐานเสมือน (Pseudo Singularity)

นี่เป็นกรณีพิเศษจริงๆ เพราะว่าหลายๆสูตรคำนวณด้วยวิธีนี้ไม่ได้เช่นสูตร Tienstra กำหนดค่าพิกัดสถานี  A (2639303.349mN, 231605.043mE) ค่าพิกัดสถานี B (2639271.845mN, 231419.755mE) และสถานี C (2639180.389mN, 231561.178mE) มุมที่รังวัดมา α = 180° มุม β = 105°3’14.94“

ข้อสังเกตุถ้ามุม α เท่ากับ 180 แสดงว่าจุดตัดตกอยู่บนเส้นตรงระหว่างสถานี A และ B แต่เขยิบเข้าไปใกล้ B มากกว่าเพราะว่ามุม β เป็นมุมป้าน มาดูการคำนวณจากเครื่องคิดเลข เมื่อเรียกโปรแกรมมาแล้วป้อนค่าพิกัดสถานีตามลำดับ A, B และ C แล้ว

จากนั้นป้อนมุม α และ β

ผลลัพธ์ที่ได้

กรณีที่ 3 ตัวอย่างจุดตัดตกหลุมดำในภาวะเอกฐาน (Singularity)

กรณีสุดท้าย โอกาสที่จะเจอแบบนี้คือสถานีทั้งสามสถานีอยู่บนวงกลมเดียวกันและจุดที่ตั้งกล้องที่ต้องการทราบค่าพิกัดและยังมาอยู่บนวงกลมเดียวกันทั้ง 4 จุด ในชีวิตจริงมีโอกาสน้อยมากเหมือนกับถูกล็อตเตอรีรางวัลที่ 1 ยังไงยังงั้น มาลองคำนวณดู

กำหนดค่าพิกัดสถานี A (2369180.389mN, 231561.178mE) สถานีพิกัดสถานี B (2639303.349mN, 231605.093mE) และสถานี C (2639478.455mN, 231509.233mE) วัดมุม α = 29°32’23.9“และ β = 18°48’43.9“

เมื่อเข้าไปในโปรแกรมป้อนค่าพิกัด A, B และ C ตามลำดับ

จากนั้นป้อนมุม α และ β ตามลำดับ

สุดท้ายโปรแกรมไม่สามารถคำนวณหาพิกัดจุดตัดได้และแสดงว่า Resection unsolved…

เครดิต (Credit)

ก็ยกเครดิตสำหรับอัลกอริทึ่มหรือสูตรคำนวณนี้ให้กับสองท่านคือ Josep M. Font-Llagunes and Joaquim A. Batlle.

ซอร์สโค้ดสูตรคำนวณ (Sourcecode)

ผมยกมาเฉพาะสูตรคำนวณตั้งชื่อฟังก์ชั่น straightLineIntersection สำหรับคนที่สนใจเรื่องโปรแกรมมิ่งก็ศึกษาโค้ดภาษาซีกันได้ครับ ไม่มีอะไรยุ่งยาก

/* Algorithm based on Josep M. Font-Llagunes and Joaquim A. Batlle.
  - Input angles are radians. 
  - Internal angles is clock-wise direction.
  - A, B and C must be located from right to left respectively.*/
bool straightLineIntersection(double *xP, double *yP,
				double alpha_AB, double alpha_BC,
				double xA, double yA, double xB, double yB, double xC, double yC)
{
  double mA, mB, mC; //slope of lines.
  double cot_12, cot_23, cot_31;
  double pAB, pAC, pBC; //Euclidean distance between station.
  double estB; //Estimated angle A-B-C.
  double xPAB, yPAB, xPBC, yPBC, xPAC, yPAC; //error triangle.
  double xCAB, yCAB, xCBC, yCBC, xCAC, yCAC; //center of triangle.
  double deltatheta;
  double theta; //first estimated and actual azimuth from P to A at the end.
  double AP, AC;
  double sign;
  double dPAC_PBC, dCAC_CBC;
  double dPAB_PBC, dCAB_CBC;
  double dPAB_PAC, dCAB_CAC;

  pAB = sqrt((xA-xB)*(xA-xB) + (yA-yB)*(yA-yB));
  pAC = sqrt((xA-xC)*(xA-xC) + (yA-yC)*(yA-yC));
  pBC = sqrt((xB-xC)*(xB-xC) + (yB-yC)*(yB-yC));

  estB = acos((pAB*pAB + pBC*pBC - pAC*pAC) / (2*pAB*pBC));
  //Check if found absolutely singularity then stop and return.
  if (((estB + alpha_AB + alpha_BC - PI) >= -0.0001) and 
      ((estB + alpha_AB + alpha_BC - PI) <= 0.0001))
    return false;

  /*first guess (theta), try to avoid for cot(angle) 
    when angle == PI or zero).*/ 
  theta = alpha_AB + alpha_BC/2.0;    
  mA = cot(theta);
  mB = cot(theta - alpha_AB);
  mC = cot(theta - alpha_AB - alpha_BC);
	
  //calc coordinates of error triangle.
  xPAB = (mA*xA - mB*xB - yA + yB) / (mA - mB);
  yPAB = mA*(xPAB - xA) + yA;  
  xPBC = (mB*xB - mC*xC - yB + yC) / (mB - mC);
  yPBC = mB*(xPBC - xB) + yB;
  xPAC = (mA*xA - mC*xC - yA + yC) / (mA - mC);
  yPAC = mA*(xPAC - xA) + yA;
	
  dPAC_PBC = sqrt((xPAC-xPBC)*(xPAC-xPBC) + (yPAC-yPBC)*(yPAC-yPBC));
  dPAB_PBC = sqrt((xPAB-xPBC)*(xPAB-xPBC) + (yPAB-yPBC)*(yPAB-yPBC));
  dPAB_PAC = sqrt((xPAB-xPAC)*(xPAB-xPAC) + (yPAB-yPAC)*(yPAB-yPAC));
  
  AP = ((xPAB - xPBC) * (yPBC - yPAC) - (xPBC - xPAC) * (yPAB - yPBC))/* / 2*/ ;
  AP = (AP < 0.0) ? -AP : AP;

  /* The next 3 Cases are psudosingularities.
    
    1st case: P is aligned with A & B.Therefore cannot calc PAB & CAB.*/
  if (alpha_AB == PI || alpha_AB == 0.0){ /* P is aligned on A & B.*/
    /* cot(alpha_AB) is infinity */
    cot_23 = cot(alpha_BC);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

    //distance CAC to CBC (center triangle).
    dCAC_CBC = sqrt((xCAC-xCBC)*(xCAC-xCBC)+(yCAC-yCBC)*(yCAC-yCBC));

    deltatheta = asin(0.5*(dPAC_PBC/dCAC_CBC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
    sign = (xPAC-xPBC)*(yCAC-yCBC) - (xCAC-xCBC)*(yPAC-yPBC);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mB = cot(theta - alpha_AB);
    mC = cot(theta - alpha_AB - alpha_BC);
  
    *xP = (mB * xB - mC * xC - yB + yC) / (mB - mC);
    *yP = mB * ((*xP) - xB) + yB; 
    return true;
  }else if ((alpha_BC == PI) || (alpha_BC == 0)){ 
    /* 2nd case: P is aligned on B & C.
                 cot(alpha_BC) is infinity */
    cot_12 = cot(alpha_AB);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

    //distance CAB ot CAC (center triangle)
    dCAB_CAC = sqrt((xCAB-xCAC)*(xCAB-xCAC)+(yCAB-yCAC)*(yCAB-yCAC));

    deltatheta = asin(0.5*(dPAB_PAC/dCAB_CAC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
    sign = (xPAB-xPAC)*(yCAB-yCAC) - (xCAB-xCAC)*(yPAB-yPAC);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
    *xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
    *yP = mA * ((*xP) - xA) + yA; 
    return true;
  }else if (((alpha_AB + alpha_BC) == PI) || ((alpha_AB + alpha_BC) == 0)){
    /* 3rd case: P is aligned on A & C. 
       cot(alpha_AB+alpha_BC) is infinity.*/
    cot_12 = cot(alpha_AB);
    cot_23 = cot(alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);

    //distance CAB ot CBC (center triangle)
    dCAB_CBC = sqrt((xCAB-xCBC)*(xCAB-xCBC)+(yCAB-yCBC)*(yCAB-yCBC));

    deltatheta = asin(0.5*(dPAB_PBC/dCAB_CBC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
	sign = (xPBC - xPAB) * (yCBC - yCAB) - (xCBC - xCAB) * (yPBC - yPAB);
	if (sign < 0.0 ) deltatheta = -deltatheta;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
	*xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
	*yP = mA * ((*xP) - xA) + yA;   
    return true;
  }else {
    /* Normal case can be calculated by other methods as well.*/
    cot_12 = cot(alpha_AB);
    cot_23 = cot(alpha_BC);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

	AC = ((xCAB - xCBC) * (yCBC - yCAC) - (xCBC - xCAC) * (yCAB - yCBC))/* / 2*/ ;
	AC = (AC < 0.0) ? -AC : AC;

    deltatheta = asin(0.5*sqrt(AP/AC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
	sign = (xPBC - xPAB) * (yCBC - yCAB) - (xCBC - xCAB) * (yPBC - yPAB);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
	*xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
	*yP = mA * ((*xP) - xA) + yA;  
    return true;
  }
}
ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 2 โปรแกรมคำนวณค่าพิกัดจุดศูนย์กลางวงกลม (Circle Center Calc)

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 2 โปรแกรมคำนวณค่าพิกัดจุดศูนย์กลางวงกลม (Circle Center Calc)

จุดศูนย์กลางวงกลมนั้นสำคัญไฉน

ในงานสำรวจสำหรับการก่อสร้างเช่นเข็มเจาะ ในขั้นตอนแรกช่างสำรวจจะวางตำแหน่งจุดศูนย์กลางของเสาเข็ม จากนั้นจะวัด offset อย่างน้อยสามด้านตั้งฉากแล้วตอกเหล็กเช่นเหล็กข้ออ้อยลงไปเป็นหมาย ขั้นตอนต่อไปจะปักปลอกเหล็ก (Casing) ในชั้นดินอ่อนเพื่อกันดินทลายตัวลง ในขั้นตอนนี้ช่วงการปักปลอกเหล็กจะมีการวัดระยะจากหมายที่ offset ไว้เพื่อให้ปลอกเหล็กอยู่ในตำแหน่งทั้งทางราบและทางดิ่ง เมื่อปลอกเหล็กลงไปสุดแล้ว เพื่อความมั่นใจว่าได้ตำแหน่งที่ถูกต้องแล้ว จะสำรวจเพื่อเก็บค่าพิกัดคือจุดศูนย์กลางของปลอกเหล็ก แต่คำถามคือจะวัดค่าพิกัดจุดศูนย์กลางของปลอกเหล็กวงกลมได้อย่างไร ในทางปฏิบัติบางครั้งจะใช้ตะแกรงเหล็กปิดปากปลอกเหล็ก แล้วช่างสำรวจจะใช้ตลับเมตรวัดระยะครึ่งหนึ่งของเส้นผ่าศูนย์กลางสองด้านตั้งฉากกันแล้วทำเครื่องหมายไว้บนกระดานไม้ จากนั้นจึงจะวัดค่าพิกัดโดยการตั้งเป้าปริซึม ถ้าใช้มินิปริซึม ตั้งต่ำจะให้ค่าที่ถูกต้องดียิ่งขึ้น แต่ปัญหาคือตอนใช้ตลับเมตรวัดกึ่งกลาง (เส้นที่ผ่านจุดศูนย์กลางคือเส้นที่ยาวที่สุด) เพื่อหาตำแหน่งศูนย์กลางนั้นใช้เวลาพอสมควรและมี error จากการคาดคะเน

วิธีต่อไปที่จะนำเสนอเพื่อทำให้การวัดค่าพิกัดทำได้เร็วขึ้น จะใช้สูตรทางคณิตศาสตร์มาช่วย โดยการวัดค่าพิกัดสามจุดโดยแบ่งให้ระยะห่างแต่ละจุดเท่าๆกัน จากนั้นช่างสำรวจจะใช้เครื่องคิดเลข คำนวณหาค่าพิกัดจุดศูนย์กลาง วิธีการนี้จะใช้เวลารวดเร็วกว่าวิธีแรกพอสมควร ในความเป็นจริงวิธีนี้อยู่บนสมมติฐานว่าปลอกเหล็กต้องไม่บุบเบี้ยว เมื่อได้ค่าพิกัดจุดศุนย์กลางมาแล้วจะนำมาเทียบกับค่าพิกัดที่ได้จากแบบ drawing ถ้าพบว่าค่าต่างกันมากเกินที่กำหนดไว้ จะต้องถอนปลอกเหล็กและทำการปักใหม่

คำนวณได้ทั้ง 2D และ 3D

โปรแกรมที่ผมเขียนนั้นคำนวณได้ทั้ง 2D (ไม่ต้องป้อนค่าระดับ) และ 3D (ป้อนค่าระดับไปด้วย) ส่วนสูตรนั้นถ้าคำนวณแบบ 3D นั้นค่อนข้างซับซ้อน ผมใช้วิธีทางลัดคือไปดูโค้ดที่มีคนเขียนไว้ในอินเทอร์เน็ต โค้ดเดิมเป็น Visual Basic ผมแปลงเป็นโค้ดภาษาซี ส่วนการคำนวณ 2D นั้นซับซ้อนน้อยกว่ามาก ถ้าสนใจสูตรก็สามารถดูจากโค้ดของผมได้

int calcCircleCenter3D(double Ya, double Xa, double Za, 
                       double Yb, double Xb, double Zb, 
                       double Yc, double Xc, double Zc, 
                       double *YCen, double *XCen, double *ZCen, double *Radius){
    double AB, BC, AC;
    double ABi, ABj, ABk, ACi, ACj, ACk, CDi, CDj, CDk, Ni, Nj, Nk;
    double cosBAC, sinBAC;
    double AD, CD, Xd, Yd, Zd;
    double X2e, Y2e, Z2e;

	//if the two points are on the same coordinates stop and return.
    if (((Xa == Xb) && (Ya == Yb)) || ((Xa == Xc) && (Ya == Yc)) 
     || ((Xb == Xc) && (Yb == Yc)))
      return 0;

    //Xa = 80.779; Ya = 90.198; Za = 23.567;
    //Xb = 78.334; Yb = 66.990; Zb = 25.567;
    //Xc = 45.345; Yc = 67.623; Zc = 34.123;
    // Answer Radius = 21.778
    // N Center = 80.840, E Center = 61.890, Z Center = 29.037

    //Lengths of AB, AC, AC
    AB = sqrt(pow(Xa - Xb, 2) + pow(Ya - Yb, 2) + pow(Za - Zb, 2));
    BC = sqrt(pow(Xb - Xc, 2) + pow(Yb - Yc, 2) + pow(Zb - Zc, 2));
    AC = sqrt(pow(Xa - Xc, 2) + pow(Ya - Yc, 2) + pow(Za - Zc, 2));
    //Direction cosines of AB(ABi,ABj,ABk)
    ABi = (Xb - Xa) / AB;
    ABj = (Yb - Ya) / AB;
    ABk = (Zb - Za) / AB;
    //Direction cosines of AC(ACi,ACj,ACk)
    ACi = (Xc - Xa) / AC;
    ACj = (Yc - Ya) / AC;
    ACk = (Zc - Za) / AC;
    //Cosine of angle BAC
    cosBAC = (pow(AB, 2) + pow(AC, 2) - pow(BC, 2)) / (2 * AB * AC);
    AD = cosBAC * AC;
    CD = sqrt(pow(AC, 2) - pow(AD, 2));
    //Position of point D, which is C projected normally onto AB
    Xd = Xa + (AD * ABi);
    Yd = Ya + (AD * ABj);
    Zd = Za + (AD * ABk);
    //Direction cosines of CD(Cdi,CDj,CDk)
    CDi = (Xc - Xd) / CD;
    CDj = (Yc - Yd) / CD;
    CDk = (Zc - Zd) / CD;
    //Direction cosines of normal to AB and CD
    //to be used for rotations of circle centre
    Ni = (ABk * CDj) - (ABj * CDk);
    Nj = (ABi * CDk) - (ABk * CDi);
    Nk = (ABj * CDi) - (ABi * CDj);
    //# Diameter of circumscribed circle of a triangle is equal to the
    //the length of any side divided by sine of the opposite angle.
    //This is done in a coordinate system where X is colinear with AB, Y is // to CD,
    //and Z is the normal (N) to X and Y, and the origin is point A
    //  R = D / 2
    sinBAC = sqrt(1 - pow(cosBAC, 2));
    *Radius = (BC / sinBAC) / 2;
    //Centre of circumscribed circle is point E
    X2e = AB / 2;
    Y2e = sqrt((*Radius) * (*Radius) - X2e * X2e);
    Z2e = 0;
    //Transform matrix
    //                   Rotations                 Translations
    //           ——————————————————————————————————————————————
    //              ABi  ,   ABj  ,  ABk                 Xa
    //              CDi  ,   CDj  ,  CDk                 Ya
    //               Ni  ,    Nj  ,   Nk                 Za
    //           ——————————————————————————————————————————————
    //Position of circle centre in absolute axis system
    *XCen = Xa + (X2e * ABi) + (Y2e * CDi) + (Z2e * Ni);
    *YCen = Ya + (X2e * ABj) + (Y2e * CDj) + (Z2e * Nj);
    *ZCen = Za + (X2e * ABk) + (Y2e * CDk) + (Z2e * Nk);
    return 1;
}

int calcCircleCenter2D(double N1, double E1, double N2, double E2, 
                       double N3, double E3,
                       double *Nc, double *Ec, double *Radius){
    double midN12, midE12, midN23, midE23;
    double k, l, p, q, r, s;
    
    //1 23.432m 78.234m
    //2 45.323m 98.765m
    //3 67.334m 66.999m
    //Answer R=22.907, N Center = 75.876, E Center = 46.217

    if (((N2 == N1) && (E2 == E1)) ||
       ((N2 == N3) && (E2 == E3)) ||
       ((N1 == N3) && (E1 == E3)))
      return 0;

    midN12 = (N1 + N2) / 2.0;
    midE12 = (E1 + E2) / 2.0;
    midN23 = (N2 + N3) / 2.0;
    midE23 = (E2 + E3) / 2.0;


    k = atan((E2-E1)/(N2-N1)) + PI / 2.0;
    l = atan((E2-E3)/(N2-N3)) + PI / 2.0;
    p = 1.0 / tan(k);
    q = 1.0 / tan(l);
    r = tan(k);
    s = tan(l);
    *Ec = ((midE23*q)-(midE12*p)+midN12-midN23)/(q-p);
    *Nc = ((midN23*s)-(midN12*r)+midE12-midE23)/(s-r);
    *Radius = sqrt((E1-*Ec)*(E1-*Ec) + (N1-*Nc)*(N1-*Nc));
    return 1;
}

ดาวน์โหลดโปรแกรม

ไปดาวน์โหลดโปรแกรมได้ที่หน้าดาวน์โหลด  หาโปรแกรมชื่อ Circle Center Calc จะได้ไฟล์มาชื่อ “ARCCENPT.g1a” วิธีการติดตั้งสามารถทำได้หลายวิธี วิธีแรกผมเขียนไว้แล้วที่ตอนที่ 1 ด้วยการ  copy โปรแกรมลง SD card แล้วถ่ายเข้าเครื่องคิดเลขอีกที วิธีที่ 2 ใช้โปรแกรม FA-124 ของ casio

การใช้งาน FA-124

โปรแกรม FA-124 สามารถไปดาวน์โหลดได้ที่ ลิ๊งค์ นี้ จากนั้นแตก zip แล้วทำการติดตั้งง่ายๆ เป็นโปรแกรมเล็กๆ  ผมเข้าใจว่าช่วงติดตั้งน่าจะมีการติดตั้งไดรเวอร์ของ casio ลงไปด้วย เพราะหลังจากนั้นผมเปิดโปรแกรม FA-124 แล้วเอาสาย USB  มาเสียบเชื่อมต่อเครื่องคิดเลขกับคอมพิวเตอร์จะมองเห็นได้ทันที  ที่เครื่องคิดเลขกดคีย์บอร์ดปุ่ม “F1” เพื่อจะเข้าโหมดการโอนข้อมูล (Data Transfer) คำเตือนการเสียบสาย USB นี้ไม่ควรจะนานเกิน 15 นาที เพราะจอภาพเครื่องคิดเลขจะเสื่อมสภาพได้ 

ส่วนหน้าตาโปรแกรม FA-124 ก็ประมาณนี้

จากนั้นมองที่หน้าต่างด้านขวามือคลิกที่ไอคอนที่วงด้วยหมายเลข “1” จากนั้นมาคลิกขวาที่วงด้วยหมายเลข “2” ที่คำว่า Default เลือกเมนู “Import

จะมีไดอะล๊อกบ็อกซ์ ให้เลือกโฟลเดอร์และไฟล์ ไปที่ไฟล์ “ARCCENPT.g1a” ที่เก็บไว้ในเครื่องคอมพิวเตอร์ ตรง Files of type ต้องเลือกเป็น “G1A File (*.g1a)

จะเห็นไฟล์ “ARCCENPT.g1a” เข้ามาใต้ลิสต์ของคำว่า “Default” ดังรูป ที่หน้าต่างด้านซ้ายให้คลิกที่ไอคอนรูปเครื่องคิดเลข ตามที่ผมวงไว้หมายเลข “1” โปรแกรมจะอ่านไฟล์จาก Storage memory ของเครื่องคิดเลข มาแสดงใต้คำว่า “User1” จากนั้นลากไฟล์ “ARCCENPT.g1a” มาวางที่คำว่า User1 (เผอิญเครื่องคิดเลขผมมีไฟล์นี้อยู่แล้ว) โปรแกรมจะถามว่าต้องการทับหรือไม่ตอบ “Yes” 

ก็เป็นอันว่าขั้นตอนเกือบจะเสร็จ ตอนนี้โปรแกรมนี้จะไปอยู่ใน Storage memory ของเครื่องคิดเลขเรียบร้อย ไม่ลืมว่าขนาดของเมมโมรีนี้ 1.5 MB โปรแกรมขนาดนี้สามารถวางได้ประมาณ 30-40 โปรแกรม ซึ่งเหลือเฟือมาก จากนั้นคลิกที่ไอคอนเพื่อทำการ disconnect และอย่าลืมดึงสาย USB ออก

ทดสอบการใช้โปรแกรมคำนวณจุดศูนย์กลางวงกลม (Circle Center Calc)

ที่เครื่องคิดเลขกดคีย์ “MENU”  จากนั้นเลื่อนลงมาที่โปรแกรมดังรูปด้านล่าง

จะเห็นเมนูของโปรแกรม ซึ่งมีให้เลือก 3 โปรแกรมย่อย ส่วนโปรแกรมที่ 3 นั้นเป็นของแถม

    1. 3 Points in 3D  (Circle Center in 3D) – คำนวณหาค่าพิกัดและค่าระดับจุดศูนย์กลางวงกลม โดยค่าที่ป้อน 3 จุดต้องประกอบด้วยค่าพิกัดและค่าระดับ (X, Y, Z)
    2. 3 Points in 2D (Circle Center in 2D) – คำนวณหาค่าพิกัดของจุดศูนย์กลางวงกลม โดยค่าที่ป้อน 3 จุด เฉพาะค่าพิกัดทางราบเท่านั้น
    3. 2 Angles & 1 Dist – คำนวณหาค่าพิกัดของจุดศูนย์กลางวงกลม โดยวัดมุมสองมุมที่ขอบของวงกลมและวัดระยะราบที่ขอบวงกลมตรงจุดแบ่งครึ่งระหว่างขอบวงกลม อธิบายไม่เห็นภาพค่อยดูรูปอีกทีภายหลัง

คำนวณหาจุดศูนย์กลางวงกลมแบบ 3D (Circle Center in 3D)

ที่เมนูกดเลข “1” ป้อนค่าพิกัด N, E  ตอนถามค่า Z คือป้อนค่าระดับ โดยที่จุดที่เก็บค่าพิกัดและระดับมามี 3 จุด จุดไม่ต้องเรียงตามลำดับเส้นรอบวงก็ได้

จากนั้นกด “EXE” เพื่อคำนวณหาค่าพิกัดและค่าระดับของจุดศูนย์กลาง ผลลัพธ์ดังรูปด้านล่าง

คำนวณหาจุดศูนย์กลางวงกลมแบบ 2D (Circle Center in 2D)

ที่เมนูกดเลข “2” ทดสอบป้อนตัวเลขดังนี้ ป้อนค่าพิกัดจุดที่ 1, 2 และ 3

กด “EXE”  จะได้ผลลัพธ์ดังนี้

คำนวณหาจุดศูนย์กลางวงกลมแบบวัดมุมและระยะทาง

ในบางครั้งการเก็บ As-built เช่นเสากลม เราไม่สามารถวัดค่าพิกัดของศูนย์กลางได้ จึงต้องใช้วัดทางอ้อมและใช้สูตรทางคณิตศาสตร์ช่วย จากรูปด้านล่างจะวัดมุมที่ขอบด้านซ้ายและขอบด้านขวาป้อนเข้าโปรแกรม จากนั้นโปรแกรมจะให้เปิดมุมมาที่ตรงกลาง (ถ้าการวัดมุมมีความแม่นยำ มุมที่ตรงกลางนี้จะผ่านจุดศูนย์กลางวงกลมพอดี) แล้วทำการวัดระยะทาง สุดท้ายโปรแกรมจะคำนวณค่าพิกัดจุดศูนย์กลางให้

ที่เมนูหลักกดคีย์เลข “3” ทดสอบโปรแกรมด้วยการป้อนข้อมูลดังนี้ โดยที่ BS = Back Station คือจุดเป้าหลัง ส่วน STA คือ Station  จุดตั้งกล้องนั่นเอง

จากนั้นโปรแกรมจะให้ set มุมของกล้องไปที่กึ่งกลางวงกลม จากนั้นวัดระยะทาง

และป้อนค่าระยะทาง สุดท้ายโปรแกรมจะคำนวณหาค่าพิกัดจุดศูนย์กลางวงกลมและรัศมีวงกลมมาด้วย

สรุป

โปรแกรมนี้เป็นโปรแกรมลำดับที่ 2 ผมหวังว่าคงเป็นประโยชน์ในแวดวงสำรวจบ้านเราบ้างไม่มากก็น้อย โปรแกรมต่างๆเหล่านี้ จะถูกปรับปรุงแก้ไขในอนาคต ท่านผู้อ่านอาจจะสังเกตเห็นว่า เวลาเรียกโปรแกรมมาอีกครั้ง จะไม่เรียกค่าเดิมที่เคยป้อนไว้ ทำให้ต้องป้อนใหม่ทุกครั้ง ในตอนนี้ผมไม่สามารถอ่านหรือเขียนค่าลงตัวแปรอักษร A-Z ได้ เพราะ casio ไม่ได้เขียนเอกสารไว้ (undocumented) แต่สักพักผมคิดว่าคงหาทางได้ เพราะมีคนทำ reverse engineering เครื่องคิดเลขรุ่นนี้พอสมควร แต่ละโปรแกรมที่ใช้สามารถเก็บค่าที่ป้อนเข้าตัวแปรตัวอักษร A-Z เวลาเรียกโปรแกรมมาใช้อีกครั้งถ้าค่าในตัวแปรไม่ได้ถูกทับไปก็สามารถกด “EXE” ผ่านไปได้เลย ติดตามกันตอนต่อไปครับ

 

 

สนุกกับโปรแกรมเครื่องคิดเลขสำหรับงานสำรวจ ตอนที่ 1 โปรแกรมแปลงพิกัด “Geo2UTM” บนเครื่องคิดเลข Casio FX 5800P

  • สวัสดีครับท่านผู้อ่านทุกท่าน ในโอกาสที่บ.เคเอ็นเอส เอ็นจิเนียริ่ง คอร์ปอเรชั่น จำกัด มีอายุใกล้จะขวบปีแล้ว ผมในฐานะวัยแล้วเกือบจะรุ่นพ่อของน้องๆชุดนี้แล้ว เห็นความตั้งใจของน้องๆ และก็ยินดีเป็นอย่างยิ่ง ในโอกาสนี้ด้วยความที่สนิทสนมกันก็ถูกลากมาให้เขียนบทความให้เพื่อฉลองครบรอบหนึ่งปี และลงที่นี่ ไม่ใช่ที่บล็อก priabroy.com ที่ประจำ ตอนแรกคิดๆอยู่ว่าจะเขียนเรื่องอะไรดี แต่สุดท้ายก็จะเขียนเรื่องโปรแกรมมิ่งเครื่องคิดเลข เพราะว่าเครื่องคิดเลขเป็นเครื่องมือพื้นฐานที่สุดสำหรับช่างสำรวจ ช่างโยธาของเรา
  • บทความนี้คงจะมีหลายตอนก็มาติดตามกัน

ย้อนอดึตแห่งความทรงจำ

  • เครื่องคิดเลข Casio นับว่าเป็นขวัญใจของเราช่างสำรวจ ช่างโยธา ตอนเรียนอยู่วิทยาลัยหรือมหาวิทยาลัย บางคนอาจจะมีประสบการณ์ในการพาเครื่องไปฝากไว้ที่โรงจำนำเพราะกลัวทำหาย ^-^ ตอนสมัยเรียนช่วงปี 30-33 ผมใช้ FX3800 ปัจจุบันเลิกผลิตไปนานแล้ว เหลือไว้แต่ความทรงจำ สมัยแต่ก่อนเขียนโปรแกรมลงเครื่องพวกนี้คงได้แค่โปรแกรมเล็กๆ เพราะเครื่องมื memory ที่จำกัดจำเขี่ยมากๆ
Casio Fx3800
Casio Fx3800
  • ต่อมาทำงานได้สักสองปีก็ไปถอยเอาเครื่องในตำนาน  FX-880P ได้มาเครื่องหนึ่ง รุ่นนี้ปัจจุบันขึ้นหิ้งเป็นตำนานไปแล้ว ทั้งที่ผ่านระยะเวลามายี่สิบกว่าปี ยังมีคนตามล่าหากัน รุ่นนี้เวลาพกพาก็เสียบไว้ที่กระเป๋าหลังของกางเกงยีนส์ ดูมันเท่ห์ แต่พกแบบนี้ บางคนเผลอนั่งทับจนเครื่องคิดเลขหักเป็นท่อน น้ำตาตกกันมาแล้วก็มี โปรแกรมมิ่งรุ่นนี้ใช้โปรแกรมภาษาเบสิคแบบมีหมายเลขบรรทัดกำกับ เปิดโลกโปรแกรมมิ่งไปอีกหลายระดับ เขียนโปรแกรมยากๆได้พอสมควร การตั้งตัวแปรใช้ตัวอักษรหลายตัวได้ เครื่องเดิมๆ มี memory 32 กิโลไบต์ มันเยอะพอสมควร
Casio FX - 880P
Casio FX – 880P
  • ด้านหลังเครื่องรุ่นนี้ยังมีช่องให้ใส่แรมเพิ่มได้อีก 32 กิโลไบต์ ผมอุตส่าห์ไปเดินแถวสะพานเหล็ก คลองถมจนได้มาหนึ่งอัน เมื่อใส่แล้วก็รวมกันได้ 64 กิโลไบต์ คิดเป็น 65536 ไบต์ เหลือเฟือ ขนาดเขียนวงรอบเล่นๆ ยังไม่เต็มเลย
s-l300
Memory Pack 32KB for FX-880P
  • มาดูโปรแกรมสำหรับเครื่องคิดเลข FX-880P เพื่อรำลึกความหลัง ผมเขียนโปรแกรมนี้หาจุดตัดระหว่างเส้นตรงกับเส้นตรง เส้นตรงกับวงกลม วงกลมกับวงกลม ผมลงมาให้เต็มๆแบบไม่มีตัดทอน ตอนนี้ผมไม่มีเครื่องคิดเลขรุ่นนี้ให้ลองแล้ว

5 ‘Intersection
10 CLS:BEEP:BEEP1:ANGLE 0:SET F5:PRINT CHR$(9);:CLS
20 PRINT ” ***Find Intersection point***”
30 CLS:PRINT “<<1:AZI#AZI>> <<2:AZI#DIST>>”;:PRINT
40 PRINT”<<3:DIST#DIST>> <>”;
50 T$=INKEY$
60 IF (T$=”1″) THEN 150
70 IF (T$=”2″) THEN 600
80 IF (T$=”3″) THEN 800
90 IF (T$=”4″) THEN 400
100 IF (T$=”Q”) THEN PRINT TAB(10);”<<>>”;
:SET F9:END
110 GOTO 50
150 CLS:PRINT “N1=”;N1;:INPUT N1
160 PRINT “E1=”;E1;:INPUT E1
170 PRINT “AZIMUTH1=”;AZI1;:INPUT AZI1
180 FANG=AZI1:GOSUB 3000:DAZI1=DANG
190 PRINT “N2=”;N2;:INPUT N2
200 PRINT “E2=”;E2;:INPUT E2
210 PRINT “AZIMUTH2=”;AZI2;:INPUT AZI2
220 FANG=AZI2:GOSUB 3000:DAZI2=DANG
230 DELTY=N2-N1:DELTX=E2-E1
240 GOSUB 3500:AZI12=Y:DIST12=X
250 NI=(TAN(DAZI2)*N2-TAN(DAZI1)*N1+E1-E2)/(TAN(DAZI2)-
TAN(DAZI1))
260 EI=(NI-N1)*TAN(DAZI1)+E1
290 PRINT “NI= “;NI;:PRINT
300 PRINT “EI= “;EI
310 GOTO 30
400 ‘Four points
410 CLS:PRINT “N1= “;N1;:INPUT N1
420 PRINT “E1= “;E1;:INPUT E1
430 PRINT “N2= “;N2;:INPUT N2
440 PRINT “E2= “;E2;:INPUT E2
450 PRINT “N3= “;N3;:INPUT N3
460 PRINT “E3= “;E3;:INPUT E3
470 PRINT “N4= “;N4;:INPUT N4
480 PRINT “E4= “;E4;:INPUT E4
490 DELTY=N2-N1:DELTX=E2-E1:GOSUB 3500:AZI12=Y:DIST12=X
500 DELTY=N4-N3:DELTX=E4-E3:GOSUB 3500:AZI34=Y:DIST34=X
510 DELTY=N3-N1:DELTX=E3-E1:GOSUB 3500:AZI=Y
512 IF (AZI12=90 OR AZI12=270) THEN NI=N1 ELSE 515
513 EI=(NI-N3)*TAN(AZI34)+E3
515 IF (AZI34=90 OR AZI34=270) THEN NI=N3 ELSE 520
520 IF NOT((AZI12=90 OR AZI12=270) OR (AZI34=90 OR
AZI34=270)) THEN NI=(TAN(AZI34)*N3-TAN(AZI12)*N1+E1-
E3)/(TAN(AZI34)-TAN(AZI12)) ELSE 540
530 EI=(NI-N1)*TAN(AZI12)+E1
540 PRINT “NI= “;NI;:PRINT
550 PRINT “EI= “;EI
560 GOTO 30
600 ‘AZI # DIST
610 CLS:PRINT “N1= “;N1;:INPUT N1
620 PRINT “E1= “;E1;:INPUT E1
630 PRINT “AZIMUTH= “;INAZI;:INPUT INAZI:FANG=INAZI:GOSUB
3000:DAZI1=DANG
635 CANG=0:PAZI=DAZI1:GOSUB 4500:DAZI2=NAZI
640 PRINT “N2= “;N2;:INPUT N2
645 PRINT “E2= “;E2;:INPUT E2
650 PRINT “DIST= “;DIST;:INPUT DIST
660 DELTY=N2-N1:DELTX=E2-E1:GOSUB 3500:DIST12=X:AZI12=Y
670 PHI1=AZI12-DAZI1:IF PHI1 675 PHI2=AZI12-DAZI2:IF PHI2 Int No.1
900 CANG=ANG2:PAZI=AZI12:GOSUB 4500:AZI2I2=NAZI
910 PNI=N2+DIST2*COS(AZI2I1)
920 PEI=E2+DIST2*SIN(AZI2I1)
930 MNI=N2+DIST2*COS(AZI2I2)
940 MEI=E2+DIST2*SIN(AZI2I2)
950 CLS:BEEP:PRINT “NI(1)= “;PNI;:PRINT
960 PRINT “EI(1)= “;PEI
970 CLS:PRINT “NI(2)= “;MNI;:PRINT
980 PRINT “EI(2)= “;MEI
990 GOTO 30
3000 ‘Convert input angle to degree
3010 DD=FIX(FANG)
3020 TEMP=FRAC(FANG)*100
3030 MM=FIX(TEMP)
3040 SS=FRAC(TEMP)*100
3050 DANG=DEG(DD,MM,SS)
3060 RETURN
3500 ‘Find Azimuth
3510 X=POL(DELTY,DELTX)
3520 IF Y180 THEN 4550 ELSE 4530
4530 TEMP=TEMP+180
4540 GOTO 4590
4550 IF TEMP>540 THEN 4580
4560 TEMP=TEMP-180
4570 GOTO 4590
4580 TEMP=TEMP-540
4590 NAZI=TEMP
4600 RETURN

ถึงยามต้องพรากจากกัน

  • ผ่านไปหลายปีสำหรับการทำงานในภาคสนาม ไปไหนมาไหนก็หอบเครื่องคิดเลขรุ่นนี้ไปใช้งาน ก่อนจะจากกันผมทิ้งเครื่องคิดเลขไว้ที่ตู้คอนเทนเนอร์หน้าไซต์งาน เพราะลูกน้องเอาไปใช้บ้าง ไม่ได้เอากลับที่พักตอนยามค่ำคืน คืนนั้นไฟฟ้าลัดวงจรที่ตู้คอนเทนเนอร์ ทราบข่าวอีกทีก็วอดแล้ว ยืนคอตกไปพักใหญ่ๆ เพราะว่าทรัพย์สินทางปัญญาหายวับไปกับพระเพลิง แต่ด้วยความไม่ประมาท ผมลอก Source code ไว้ที่เครื่องคอมพิวเตอร์ไว้บ้างแต่ไม่ทั้งหมด
  • ถึงแม้จะรู้ว่าใดๆในโลกนี้ล้วนอนิจจัง แต่ประสบการณ์เรื่องนี้ทำให้การใช้งานคอมพิวเตอร์ผมจะแบ็คอัพข้อมูลที่ทำงานได้สอง สามที่เสมอ และที่สำคัญคือผมชอบโปรแกรมมิ่ง จะเก็บ source code ไว้อย่างดี เก็บไว้หลายๆที่เช่นกัน แต่อย่างไรก็ตามต้องขยัน back up ครับ ถ้ามันพังในวันนี้ยังเอาของเมื่อวานมาใช้งานได้

สิบปีที่เครื่องคิดเลขห่างหาย

  • ตั้งแต่นั้นเป็นต้นมาผมก็ไม่เคยซื้อเครื่องคิดเลขอีกเลยประมาณสิบปี เพราะว่าเป็นยุคเวลาของโน๊ตบุ๊ค เอะอะจะคำนวณอะไรๆก็ต้องที่โน๊ตบุ๊ค แต่ชีวิตเหมือนขาดอะไรไป จนมาถึงยุคมือถือจอสัมผัสยิ่งแล้วไปกันใหญ่ เพราะมีโปรแกรมจำลองเครื่องคิดเลขมาให้ใช้งาน วันนั้นไปเดินห้างเห็นเครื่องคิดเลข FX 5800P วางอยู่ที่ชั้นขายของ ป้ายบอกลดราคาเหลือ 1990 บาท จากราคาเดิม 2890 บาทคิดอยู่ในใจว่ามันลดราคากระหน่ำแท้ๆ ราคานี้ไม่รวมสายลิ๊งค์ ดูสเป็คบอกว่าเขียนโปรแกรมได้ มีเม็มโมรีมาให้ 28500 ไบต์ ผมนึกถึง Fx-880P ทันที ตัดสินใจซื้อมาลอง ที่ไหนได้มาถึงบ้านเปิดดูในเน็ตเห็นราคาขายออนไลน์ราคา 1790 บาทได้สายลิ๊งค์ด้วย มันถูกว่ากว่าที่ผมซื้อหลายร้อยบาท เอาละวะ ภูมิใจที่ได้ใช้ของแพงกว่า
Casio FX5800P
Casio FX5800P

FX 5800P กับอารมณ์กระชากใจเหมือนกลับไปเรียน (Back to old school) อีกครั้ง

  • เอาละครับ ได้ใช้เครื่องคิดเลขจริงๆสักที คือหลายสิบปีที่ผ่านมาเหมือนรออะไรบางอย่าง แต่ไม่รู้ว่ามันคืออะไร เจออีกทีใช่เลย เวลากดคีย์เครื่องคิดเลขมันมีการตอบสนองได้อารมณ์เหมือนได้กลับไปใช้และเรียนมหาวิทยาลัยอีกครั้ง ผมเริ่มอ่านคู่มือเพื่อจะเขียนโปรแกรม ใช้เวลาไม่มากนักเพราะคุ้นๆอยู่ คู่มืออะไรก็หาง่ายในยุคนี้ ดาวน์โหลดมาอ่านได้สบายๆ
  • ช่วงเริ่มต้นกับเครื่องคิดเลข ผมเริ่มโปรแกรมง่ายๆก่อนเช่นจำพวก Cogo เช่นหามุม ระยะทางเมื่อกำหนดค่าพิกัดของจุดสามจุด ความรู้สึกแรกคือชอบเครื่องคิดเลขรุ่นนี้พอสมควร
  • เคยคิดเล่นๆว่าเครื่องคิดเลขพวกนี้ ยกเว้น FX-880P ที่เทพไปแล้ว จะสามารถเขียนโปรแกรมระดับ Advance ได้ไหมเช่นแปลงพิกัดไปมาระหว่าง UTM และ ค่าพิกัดภุมิศาตร์ (Geographic) หาระยะทางระหว่างสองจุดบน Ellipsoid หรือหาระยะทาง Geodesic distance

ข้อจำกัดด้านโปรแกรมมิ่งแต่ฟ้าปิดกั้นดินไม่ได้

  • จั่วหัวให้เว่อร์ซะยังงั้น ปัญหาจริงๆที่คนจะเขียนโปรแกรมพวกนี้คืออย่างแรกคือสูตร ไม่รู้จะใช้เวอร์ชั่นไหนดี อย่างที่สองคือเครื่องคิดเลขรุ่นพวกนี้มีตัวแปรจำกัด จาก A ถึง Z นับได้ 26 ตัว น้อยซะจริงๆ ถ้าสูตรมีการใช้ตัวแปรมากกว่านี้จะทำอย่างไร ปัญหานี้ยังมีทางออก เครื่องคิดเลขรุ่นนี้เตรียมตัวแปรอนุกรมให้คือ Z เราสามารถใช้งาน Z[1],Z[2],Z[3],…. ได้มากเท่าที่เมมโมรีเครื่องคิดเลขยังเหลือพอ
  • ข้อจำกัดอีกอย่างคือไม่สามารถนำไฟล์ข้อมูลให้โปรแกรมได้ ดังนั้นโปรแกรมเครื่องคิดเลขจึงจะต้องไม่ซับซ้อนมาก ถ้ามากกว่านี้ต้องใช้เครื่องคอมพิวเตอร์จะดีที่สุด

โปรแกรมแปลงพิกัดจากค่าพิกัดภูมิศาสตร์ ไปยัง ค่าพิกัดระบบพิกัดฉาก UTM

  • ก่อนจะไปต่อเรื่องโปรแกรมมิ่ง มาเรียกน้ำย่อยกันก่อน มาดูรูปการคำนวนกันก่อน ต้องการแปลงค่าพิกัด lat=14°27’44.71″ long=100°58’27.02″ ไปยังค่าพิกัด UTM

input_geo

  • แปลงพิกัดเป็น UTM ได้ค่า N=1599784.382 E=712796.211

output_utm1

  • และคำนวน zone  ของ UTM มาให้ด้วยจุดพิกัดนี้อยู่ในโซน 47

output_utm2

แปลงพิกัดบน WGS84

  • สำหรับโปรแกรมจะแปลงพิกัดบนพื้นฐาน WGS84 เท่านั้น ไม่มีการแปลงข้ามพื้นหลักฐานเพราะมันจะซับซ้อนยุ่งยากเกินกว่าเครื่องคิดเลข เมมโมรีน้อยๆจะทำได้

โปรแกรมคำนวณ

  • ข้อจำกัดอีกอย่างของเครื่องคิดเลขรุ่นนี้คือสามาถใช้สายลิ๊งค์โอนโปรแกรมจากเครื่องไปหาเครื่องอื่นเท่านั้น แต่ถ้าโอนโปรแกรมเข้าเครื่องคอมพิวเตอร์ผมพยายามหาในเน็ตตามฟอรั่ม มีคนพยายามจะแกะโปรโตคอลแต่ไม่น่าจะสำเร็จ ที่นี้จะเอาโปรแกรมมาแสดงบนคอมพิวเตอร์ได้ยังไง ก็ต้องนั่งแกะโปรแกรมทีละเม็ด เขียนด้วยเวิร์ดเพราะต้องการสัญลักษณ์ให้ตรงกับที่แสดงในเครื่องคิดเลขมากที่สุด สัญลักษณ์ส่วนใหญ่หาได้ในฟอนต์ Symbol, Wingdings
  • เมื่อแกะเสร็จแล้วก็ดูทวนอีกทีว่าพิมพ์ได้ตรงกับในเครื่องคิดเลขไหม ไม่มีอะไรตกหล่นก็ export มาเป็นภาพเอามาแปะ ผมพยายามแยกสีให้ดูง่ายตรงไหนเป็นฟังก์ชันใช้สีแดงเข้ม ตัวแปรสีน้ำเงิน เงื่อนไขโปรแกรมใช้สีเขียว ลองดูครับ
Geo2UTM
Geo2UTM
Geo2UTM(continued)
Geo2UTM(continued)
  • สำหรับเครื่องคิดเลขแล้ว ก็ไม่ถือว่าโปรแกรมใหญ่มากนัก แต่สังเกตดูตัวแปร ตั้งแต่ตัว A ถึงตัว Z ใช้แทบหมด ผมคงไม่อธิบายตัวโปรแกรมนะครบ จะยืดเยื้อ สำหรับคนที่เคยเขียนโปรแกรมเครื่องคิดเลขคาสิโอ้รุ่นเหล่านี้ มองแป๊ปเดียวก็โอเคแล้ว

วิธีใช้งาน

  • วิธีใช้งานก็ง่ายครับตามสไตล์เครื่องคิดเลข กดเรียกโปรแกรมก่อน Shift+Prog ที่เครื่องคิดเลขผมเลือก “GEO2UTM

20170108_122613

ตัวอย่างที่ 1

  • โปรแกรมจะถามค่าพิกัดแลตติจูดและค่าลองจิจูด ตัวอย่างการใช้นี้กำหนดให้ latitude = 26°12’3.6128″N longitude = 50°36’25.1928″E ที่เครื่องคิดเลขกดคีย์ “EXE” โปรแกรมจะถามค่าแลตติจูด ป้อนไปให้ทศนิยมครบ ตามรูปแรก  (เครื่องคิดเลขเวลาแสดงค่าพิกัดที่เราป้อนไปแล้ว จะแสดงแค่ทศนิยมสองตำแหน่ง) และป้อนค่าลองจิจูดให้ตามรูปถัดไป

20170108_123456

20170108_123609

ผลลัพธ์การคำนวณ

  • โปรแกรมจะคำนวณค่าพิกัดฉาก UTM ให้พร้อมบอกหมายเลขโซนของยูทีเอ็มมาด้วยและบอกว่าเป็นโซนด้านเหนือหรือด้านใต้ของเส้นศูนย์สูตร ในที่นี้จุดค่าพิกัดนี้แถวประเทศบาเรนห์ โซน 39N (เหนือ)

20170108_130154 20170108_130205

  • เทียบกับค่าที่คำนวณด้วยโปรแกรม Surveyor Pocket Tools ตรงกันครับ หมายเหตุนิดหนึ่งว่าการคำนวณการแปลงพิกัดในโปรแกรม  Surveyor Pocket Tools ใช้ไลบรารีของ Proj4 ผ่านทาง pyproj
Surveyor Pocket Tools
Surveyor Pocket Tools

ตัวอย่างที่ 2

  • มาลองดูกัน ถ้าผู้อ่านเกิดจับพลัดจับผลูไปทำงานต่างประเทศที่อยู่ใต้เส้นศูนย์สูตร ก็ยังสามารถใช้ได้ กำหนด แลตติจูด = 16d9’7.048″S ลองจิจูด = 33d33’49.779″E ค่าพิกัดอยู่ที่ประเทศโมซัมบิค ทวีปอาฟริกา
  • ป้อนค่าพิกัดเข้าดังนี้ ค่าแลตติจูดอยู่ใต้เส้นศูนย์สูตรให้ติดเครื่องหมายลบข้างหน้า ส่วนค่าพิกัดลองจิจูดก็ป้อนปกติ

20170108_132745
20170108_132903

  • ผลลัพธ์การแปลงพิกัดได้ดังนี้ จุดอยู่ที่โซน 36S ใต้เส้นศูนย์สูตร

20170108_132916
20170108_132923

  • เปรียบเทียบผลการคำนวณกับ Surveyor Pocket Tools ตรงกัน

surveyor-pocket-tools_2017-01-08_13-31-09

  • ก็พอหอมปากหอมคอครับ ตอนหน้ามาดูโปรแกรมแปลงค่าพิกัดฉากยูทีเอ็ม (UTM) ไปยังค่าพิกัดภูมิศาสตร์บ้าง ติดตามกันตอนต่อไปครับ

สนุกกับโปรแกรมเครื่องคิดเลขสำหรับงานสำรวจ ตอนที่ 3 โปรแกรมคำนวณระยะทางบนทรงรี สำหรับเครื่องคิดเลข Casio FX 5800P

โปรแกรมคำนวณระยะทางที่สั้นที่สุดบนทรงรี (Geodesic Distance)

  •  สวัสดีครับผู้อ่านกลับมาพบกันอีกครั้ง ครั้งนี้หอบเอาสูตรยาวๆมาฝากกัน เรื่องระยะทางบนทรงรีความจริงจัดอยู่ในหมวด  Geodesy ที่ถือว่าเป็นเรื่องยากสำหรับนักศึกษาสมัยก่อน เพราะคำนวณทีต้องเปิดตารางล็อก สมัยนี้ถ้าทำความเข้าใจก็ไม่ได้ยากแล้วครับ มีตัวช่วยมากมายเช่นเครื่องคอมพิวเตอร์
  • ระยะทางที่สั้นที่สุดบนทรงรีเรียกว่า Geodesic Distance ถือว่าเป็นะระยะทางที่สั้นที่สุดบนทรงรี จัดเป็นสูตรที่มีมานานนมแล้ว นักคณิตศาสตร์สมัยก่อนคิดค้นขึ้นมาเพื่อช่วยในการคำนวณระยะทางที่สั้นที่สุดเช่นสำหรับการเดินเรือเดินข้ามมหาสมุทร เพราะแผนที่ที่เราใช้กัน ถ้าเมืองท่าที่ต้องการเดินทางนั้นอยู่กันไกลหลายพันไมล์ทะเล จะเอาดินสอมาขีดตรงๆเชื่อมกันบนแผนที่เดินเรือ จะได้ระยะทางที่ไม่ใช่ใกล้ที่สุด จะกลายอ้อมไป
  • เคยสังเกตเวลานั่งเครื่องบินไปต่างประเทศไกลๆไหมครับ จะมีรูปเส้นทางบินบนจอมอนิเตอร์ให้ดู จะเห็นเส้นทางบินเป็นเส้นโค้งๆ ไม่ใช่ตรงๆ นั่นเป็นเพราะเส้นโครงแผนที่ ความจริงแนวเครื่องบินก็ไม่ได้เฉไปไหน แต่เมื่อเอาแนวบินมาวาดบนแผนที่ที่ใช้เส้นโครงแผนที่แบบรักษารูปร่าง(Conformal) ที่เราใช้กันในปัจจุบันเช่น UTM เส้นทางบินจะกลายเป็นเส้นโค้งไป

  • ก่อนจะไปต่อ ผมอยากจะพูดถึงระยะทางอีกระยะทางหนึ่งบนทรงกลม เรียกว่า Great Circle Distance คือระยะทางที่สั้นที่สุดบนทรงกลม คนโบราณนำระยะทางนี้มาคำนวณเส้นทางการเดินเรือ เส้นทางการบิน แต่เนื่องจากโลกเราไมได้กลมแต่ทรงคล้ายออกมาทางทรงรีมากกว่า Geodesic distance เลยแม่นกว่า Great circle distance แต่คนก็ยังนิยมใช้ Greate circle distance มากกว่าอยู่ดีถึงจะคลาดเคลื่อนจาก Geodesice distance ไปประมาณ 0.1% แต่ก็คำนวณง่ายกว่า ในสูตรไม่มีการวนลูป เรียกสูตรการคำนวณบนทรงกลมนี้ว่า “Haversine
  • ถ้าสนใจเรื่อง Geodesic distance และ Greate circle distance ในรายละเอียดและโปรแกรมคำนวณบนคอมพิวเตอร์ติดตามได้ในโปรแกรม Survey Pocket Tools ของผมได้ที่บล็อก priabroy.name

การประยุกต์ใช้งาน

  • บางคนอาจจะว่าไกลตัว แต่เวลาเราค้นหาเส้นทางสำหรับโปรแกรมนำทาง (Navigator) บนโทรศัพท์มือถือทั้งหลาย ทราบไหมว่าเขาคำนวณระยะทางได้อย่างไร อย่างของ google maps ไม่มีเอกสารเปิดเผย แต่หลักการคือเส้นทางต่างๆของกูเกิ้ลจะต่อกันเป็นจุดๆ เรียกว่า node แต่ละโหนดจะมีค่าพิกัดแลตติจูด/ลองจิจูด กำกับอยู่ โปรแกรมจะคำนวณหาระยะทางระหว่างแต่ละโหนดด้วยการนำค่าพิกัดดังกล่าวมาเข้าสูตรคำนวณระยะทางที่สั้นที่สุดบนทรงรี (geodesic distance) หรือไม่ก็ระยะทางบนทรงกลม (great circle distance) เมื่อนำระยะทางแต่ละเส้นมารวมๆกันก็จะได้เป็นระยะทางแสดงให้เราดูบนหน้าจอโทรศัพท์มือถือ
  • ส่วนการเลือกเส้นทางจากต้นทางไปจุดหมายปลายทางแต่ละสถานที่ ว่าไปตามถนนเส้นไหนจะสั้นที่สุดอยูในเรื่อง Travelling Salesman Problem (TSP) อันนี้ลึกซึ้งมากครับ ไม่ขอกล่าวถึง
  • ในฐานะช่างสำรวจ เราใช้กันมันเกือบทุกวันโดยที่ไม่รู้ตัว ก็ลองมาศึกษากันหน่อยว่ามันทำงาน คำนวณมาให้ได้อย่างไร แต่ก่อนจะไปกันต่อ มาลองซักซ้อมเรื่องความรู้เซอร์เวย์กันเล็กน้อยก่อน

เกร็ดความรู้เล็กน้อยสำหรับช่างสำรวจ

  • วันนี้มาว่ากันต่อเรื่องมุมอะซิมัทและฟังก์ชั่น Rec() บนเครื่องคิดเลข Casio FX-5800P ฟังก์ชัน Rec() เอาไว้คำนวณหาค่าพิกัดปลายทาง เมื่อทราบค่าพิกัดต้นทาง, ระยะทางและอะซิมัท
  • Rec(r,θ) เขียนใหม่เป็น Rec(ระยะทาง, อะซิมัท) ก่อนจะเข้าวิธีการใช้งาน มาเท้าความกันหน่อย

  • ลองมาดูรูปด้านบน กำหนดมุมอะซิมัท (θ) และระยะทาง (R) ต้องการหาระยะทางไปตามแกน X จากจุด A ไปหาจุด B หา ได้เท่ากับ  ระยะทาง x Sine (มุมอะซิมัท)
    • ΔX = R x Sin(θ)  เรียกว่า “Departure” คุ้นๆไหม
  • ระยะทางไปตามแกน Y จากจุด A ไปจุด B
    • ΔY= R x Cos(θ)  เรียกว่า “Latitude”
  • ดังนั้นค่าพิกัดจุด A หาได้จาก
    • XB  = XA + ΔX = XA + R x Sin(θ)
    • YB  = YA + ΔY = YA + R x Cos(θ) 
  • ถ้าจำสูตรยากหรือขี้เกียจจำ ฟังก์ชั่น Rec() ช่วยได้ มาดูตัวอย่าง

  • ต้องการทราบค่าพิกัด A เมื่อทราบค่า (X,Y) ของจุด B ดังรูปด้านบน ระยะทาง 100 เมตร อะซิมัทจาก B ไป A = 240º
    • แทนค่าลงไปในสูตร Rec(ระยะทาง, อะซิมัท) = > กดเครื่องคิดเลขเลย Rec(100,240) ผลการคำนวณได้ผลลัพธ์มาสองอย่างคือ ΔX เก็บไว้ในตัวแปร “J” ส่วนค่า ΔY เก็บไว้ในตัวแปร “I”
    •  ผู้อ่านจะสังเกตว่าทำไม  ΔX ไม่เก็บไว้ในตัวแปร “I” และ ΔY ไม่เเก็บไว้ในตัวแปร “J” อย่างที่มันควรจะเป็น ต้องไม่ลืมว่ามุมที่เขาเขียนฟังก์ชันตัวนี้มาคือมุมกวาดจากแกน X แต่เราใช้มุมกวาดจากแกน Y มันเลยสลับร่างสร้างรัก ด้วยประการฉะนี้
  • ลอง Recall (RCL) ค่ามาดูจะได้ I = -50 และ J = -86.603
    • XA  = XB + ΔX = 586.603 – 86.603 = 500
    • YA  = YB + ΔY =  550 – 50 = 500
    • คำตอบคือค่าพิกัดจุด A (500,500)
  • มุมอะซิมัทเป็นมุมที่มหัศจรรย์ครับ เวลาคูณ Cos กับ Sin มันจะไปตกควอดแรนท์ที่ถูกต้องให้ โดยที่หัวสมองเราไม่ต้องไปนึกตาม ลองคิดถึงุมุม Bearing สิครับ สยดสยอง แต่โชคดีบ้านเราไม่ได้ใช้
  • ยังมีเกร็ดเล็กเกร็ดน้อยเกี่ยวกับอะซิมัทอีกนิด มาว่ากันต่อตอนต่อไป

โปรแกรมคำนวณระยะทางที่ส้ั้นที่สุดบนทรงรี (Geodesic Distance)

  • มาเข้าเรื่องโปรแกรม ใครที่ไม่ใช่รุ่นหนุ่มๆก็เตรียมยาดมไว้ เผื่อตาลาย ใครที่ชอบความเจ็บปวดก็ไม่ผิดหวังครับ โปรแกรมลากยาวเหยียด เนื่องจากโปรแกรมบนเครื่องคิดเลขไม่สามารถเขียนเป็นบล็อคได้เหมือนภาษาคอมพิวเตอร์บนเครื่องคอมพิวเตอร์ ทำให้เวลาดูโค๊ดยาก มันดูติดกันพรืดไปหมด
  • แต่ถ้าถามว่าเขียนยากไหม ไม่ยากเลยครับ ขอให้มีสูตรคือสิ่งที่สำคัญที่สุด ยุคอินเทอร์เน็ต ถ้าลองค้นหาสูตร Geodesic distance ดู รับรองว่ามากันเยอะ ไม่รู้จะเลือกใช้สูตรไหน บางทีคนเอามาเผยแพร่ก็ลงให้ไม่ครบก็มี ตกไปสักบรรทัดเราเอามาใช้ก็ใช้ไม่ได้แล้ว
  • มาดูโปรแกรมกันเลยครับ

  • การคำนวณจะมีการวนลูปด้วยคำสั่ง For … Next ทุกคร้้งจะมีการเปรียบเทียบค่าใหม่กับค่าเริ่มต้นถ้าค่าต่างกันน้อยกว่า สิบยกกำลังลบสิบสอง (10-12) การคำนวณจะหยุดทันทีแสดงว่าค่าใช้ได้ ผมลองจับจำนวนครั้งที่วนลูปดูประมาณ 3-4 ครั้งแค่นั้น ในตัวโปรแกรมตัวแปรไปดึงตัวแปรอนุกรม Z มาใช้ทั้งหมด 10 ค่า Z[1], Z[2], Z[3], …. Z[10] ตอนประกาศใช้ใช้คำสั่ง 10→DimZ ตอนเลิกใช้ตอนท้ายโปรแกรมประกาศ 0→DimZ เพื่อคืนเมมโมรีให้กับเครื่องคิดเลข
  • เวลาคีย์ชื่อโปรแกรมเนื่องจำกเครื่องคิดเลขจำกัดความยาวตั้งชื่อสั้นว่า “GEODESIC

วิธีการใช้งานโปรแกรม

  • ต้องการระยะทาง Geodesic distance
    • จากจุดที่ 1 ค่า latitude = 14°27’27.0″N longitude = 100°54’12.57″E
    • ไปหาจุดที่ 2 ค่า latitude = 14°36’49.53″N longitude = 98°1’39.63″E
  • เรียกโปรแกรมก่อน กดที่ “File” เลื่อนไปที่ “Geodesic

  • ป้อนค่าพิกัดจุดที่ 1 ค่า latitude = 14°27’27.0″N longitude = 100°54’12.57″E

  • ป้อนค่าพิกัดจุดที่ 2 ค่า latitude = 14°36’49.53″N longitude = 98°1’39.63″E

ผลลัพธ์ของการคำนวณ

  • ผู้อ่านสังเกตไหมเวลากด “EXE” เพื่อคำนวณขั้นสุดท้าย เครื่องจะวูบไปหลายวินาที แต่ถ้าโปรแกรมนี้ถ้าย้ายไปเครื่อง Casio FX-9860G II คงใช้เวลาน้อยกว่าเพราะตามสเป็คแล้วแรงกว่า FX-5800P ประมาณสองเท่า มาดูผลลัพธ์กัน ได้ระยะทาง = 310432.516 เมตร หรือ 310.433 กม.

  • เทียบกับโปรแกรม Geodesic ใน Surveyor Pocket Tools ได้ค่าเท่ากัน ซึ่งหมายเหตุอีกนิดว่าอัลกอริทึ่มที่ใช้คำนวณในโปรแกรม Surveyor Pocket Tools ผมใช้ไลบรารีจาก GeographicLib ซึ่งผลลัพธ์การคำนวณตรงกับสูตรที่เราป้อนในเครื่องคิดเลข ก็ทำให้เรามั่นใจครับว่ามาถูกทาง สูตรถูกต้องแล้ว

  • ตอนหน้าคงเป็นตอนสุดท้ายแล้ว โปรแกรมที่ผมเขียนไว้คำนวณด้านพื้นฐานมีเยอะพอสมควร แต่เนื่องจากผมค้นดูในอินเทอร์เน็ตมีคนเขียนโปรแกรมขายพร้อมเครื่องอยู่หลายๆท่าน เกรงว่าจะไปปิดทางทำมาหากินกัน (พูดอย่างนี้ไม่ใช่โปรแกรมที่ผมเขียนขึ้นมาจะดีกว่านะครับ) ซึ่งผมเคารพในทรัพย์สินทางปัญญาของทุกๆท่าน ผมจึงพยายามเขียนโปรแกรมสำหรับเครื่องคิดเลขฉีกไปในด้าน advance ในประเด็นที่สูตรยากๆที่โปรแกรมคอมพิวเตอร์สามารถทำได้ เครื่องคิดเลขก็สามารถทำได้เช่นกัน ถึงแม้จะช้ากว่า แต่มีดีที่แบตเตอรีอึด ใช้ได้เป็นปี เครื่องก็เบาคุ้มที่จะพกพาไปไหนมาไหน
  • ถึงแม้จะแอพเครื่องคิดเลขบนโทรศัพท์มือถือ จะเอาบวกลบคูนหาร แต่ผมไม่เปิดแอพเครื่องคิดเลขอีกเลย เพราะหยิบโทรศัพท์มือถือมา มันทำให้เสียสมาธิพอสมควร เนื่องจากเปิดหน้าจอมาจะเห็น โปรแกรมต่างๆ เช่นด้านโซเชียลคอยดึงดูดให้กดตามมันไป จนบางครั้งลืมว่าหยิบโทรศัพท์มาทำอะไร
  • พบกันตอนหน้าตอนสุดท้ายครับ อย่าลืมแวะไปเยี่ยมเยียนผมได้ที่เดิม www.priabroy.name ขอบคุณครับ

บอกเล่าประสบการณ์งานสำรวจ Hydrographic Survey ในเบื้องต้น

งานสำรวจทางอุทกศาสตร์ (Hydrographic Survey)

  • จากประสบการณ์ของผมที่ผ่านมาเกี่ยวกับงาน Hydrographic survey สักประมาณ10 ปีกว่า อยากจะเล่าเรื่องประสบการณ์งานสำรวจด้านนี้ ซึ่งงานสำรวจทางน้ำ(ขอเรียกสั้นๆ)เมื่อเทียบกับงานสำรวจด้าน Land survey จะเป็นส่วนน้อยมาก มาดูกันว่างานสำรวจด้านนี้มีอะไรบ้าง มีจุดมุ่งหมายอะไร นำไปประยุกต์ใช้กันอย่างไร แต่ก็ต้องออกตัวว่าประสบการณ์ของผมที่ผ่านมาด้านนี้เป็นเพียงงาน scale เล็กๆ ไม่ใหญ่โตอะไรนัก และสิ่งที่จะเขียนต่อไปนี้ำไม่ได้เน้นวิชาการมากนัก

Hydrographic Survey คืออะไร

  • คือศาสตร์ที่ใช้วัดและรวบรวมข้อมูลจากพื้นที่ที่เป็นผืนน้ำ เช่นแม่น้ำ บึง อ่างเก็บน้ำ ทะเลสาบ ทะเลและมหาสมุทร ข้อมูลที่ได้จากการวัดได้แก่ความลึก(Depth) สภาพของท้องน้ำ(Water bed) คลื่น(Wave) กระแสน้ำ(Current) น้ำขึ้นและน้ำลง(Tide) โดยใช้เครื่องมือที่แตกต่างออกไป สุดท้ายจากข้อมูลสำรวจต่างๆจะนำมาประมวลผลเป็นแผนที่ หรือฐานข้อมูล ซึ่งมีหลายรูปแบบแล้วแต่จุดมุ่งหมายของงาน

จุดประสงค์ของ Hydrographic Survey

  • การสำรวจร่องน้ำเพื่อการเดินเรือ (Maritime Navigation) เพื่อให้เกิดความปลอดภัยต่อการเดินเรือ นอกจากแสดงความลึกที่เหมาะสมกับการเดินเรือแล้ว สภาพท้องน้ำมีอุปสรรคอื่นหรือไม่เช่นเรือหรือโป๊ะที่จมอยู่ใต้น้ำ  งานสำรวจอาจต้องทำทุกๆปี เนื่องจากร่องน้ำเดินเรือมีการเปลี่ยนแปลงตลอดเวลา บางร่องอาจจะต้องขุดลอกด้วยเรือขุดทุกๆปี การสำรวจจะทำก่อนและหลังขุด เพื่อตรวจสอบปริมาณและความลึกว่าได้ตามเกณฑ์หรือไม่ ดูรูปด้านล่างที่แสดงได้สวย ชัดเจน สังเกตด้านซ้ายจะเห็นเรือจมอยู่ใต้น้ำด้วย
แสดงร่องน้ำเดินเรือ (ภาพจาก http://celebrating200years.noaa.gov)
  • การสำรวจเพื่อการก่อสร้าง (Marine Construction) เพื่อเป็นข้อมูลบริเวณที่จะทำการก่อสร้าง ให้สามารถออกแบบสิ่งปลูกสร้างได้อย่างเหมาะสม งาน Marine Construction ได้แก่งานก่อสร้างท่าเทียบเรือ(Jetty, Wharf & Quay) งานวางสาย Submarine cable ในทะเลเช่นสายไฟฟ้า สายไฟเบอร์ออปติก งานวาง Submarine pipeline เช่นท่อแก็ซ ท่อน้ำมัน งานติดตั้งแท่นขุดเจาะแก็ซ แท่นขุดเจาะน้ำมัน
    งานก่อสร้างท่าเทียบเรือ
    งานติดตั้งแท่นขุดเจาะน้ำมันในอ่าวไทย
    งานวางสายไฟฟ้าใต้น้ำ (Submarine cable)
    การก่อสร้างท่าเรือโดยการใช้ Caisson ที่ท่าเรือแหลมฉบัง(รูป A. การหล่อ Caisson บน floating dock – ภาพเอื้อเฟื้อจากนายช่างเบญจ นามแดง)
    (รูป B . หล่อ Caisson ได้ความสูง 12 เมตร จม floating dock ส่วน caisson จะลอย- ภาพเอื้อเฟื้อจากนายช่างเบญจ นามแดง)
    (รูป C . ลาก Caisson ที่ความสูง 12 เมตร ไปหล่อความสูงเพิ่มอีก 6 เมตรที่จุดก่อสร้างท่าเรือ – ภาพเอื้อเฟื้อจากนายช่างเบญจ นามแดง)

    อุปกรณ์และเครื่องมือที่ใช้ในงาน Hydrographic Survey

      1. ระบบพิกัด (Position System) ปัจจุบันคงไม่มีอะไรดีไป กว่า GPS อีกแล้วซึ่งสนนราคาของ GPS ขึ้นอยู่กับความละเอียดของงานเช่นสำหรับการเดินเรือทั่วๆไปราคาก็อยู่หลัก หมื่นบาท ส่วนระบบที่ต้องการค่าพิกัดที่ถูกต้องสูง อาจจะมีราคาเป็นแสนบาทจนถึงล้านบาทก็มี ผมพอจะแบ่งได้ตามประเภทการใช้งานดังนี้
        • เครื่อง GPS แบบ Stand alone สำหรับการใช้งานที่ไม่ต้องการความถูกต้องสูงมากนัก เช่นติดตั้งในเรือท่องเที่ยวชายฝั่ง เรือประมง ส่วนบางรายก็ใช้เครื่อง GPS มือถือหิ้วมาใช้ก็มี
        เครื่อง Garmin ที่ติดตั้งแผนที่ BlueChart
        • เครื่อง GPS แบบ DGPS (Differential GPS) เป็นระบบที่สามารถรับค่าปรับแก้ค่าพิกัดให้ถูกต้องมากยิ่งขึ้น ด้วยการปรับแก้ C/A Code ได้ความถูกต้องอยู่ประมาณ 1 เมตร ระบบนี้สามารถแยกย่อยเช่น
          • รับสัญญาณจากคลื่นวิทยุ (Beacon) เป็นระบบเก่าแก่ เมืองไทยก็มีใช้งานอยู่ส่วนใหญ่แล้ว support เรือเดินทะเลเข้าเทียบท่า เครื่อง GPS แบบนี้ต้องรับสัญญาณ Beacon ได้ (2 in 1) ซึ่ง Beacon เองก็คือคลื่นวิทยุย่าน 200 – 400 KHz
          • รับสัญญาณจากดาวเทียม เช่นดาวเทียม Ominstart, Landstar ซึ่งไม่ฟรีต้องเช่าสัญญาณใช้งาน และที่ฟรีได้แ่ก WAAS, EGNOS ฟรีแต่ประเทศไทยใช้งานไม่ได้เพราะไม่ได้ติดตั้งสถานีภาคพื้นดิน (ผมเคยเช่าสัญญาณของ Omnistar ใช้สำหรับงาน offshore)
          • ตั้งสถานี Base Station เอง ส่วนใหญ่จะใช้งานด้านการสำรวจมากกว่าอย่างอื่น การติดตั้งจะใช้ GPS ติดตั้งบนฝั่งบนหมุดที่รู้ค่าพิกัด ช้วิทยุ Radio modem ส่งค่าปรับแก้ค่าพิกัดมาบนเรือสำรวจ ซึ่งบนเรือสำรวจก็ติดตั้ง GPS อีกชุดหนึ่งเรียกว่า Rover การรับสัญญาณค่าปรับแ้ก้ใช้ Radio modem เป็นตัวรับค่าปรับแก้ การรับส่งข้อมูลปรับแก้อาศัยโปรโตคอลมาตรฐานที่เรียกว่าของ RTCM (Radio Technical Commission for Maritime Services) ที่เรียกว่า RTCM SC104
        Trimble ตระกูล DSM เป็นเครื่องแบบ DGPS 5 In 1 (ใช้งาน DGPS ได้ทุกรูปแบบและใช้งานในโหมด RTK ได้)
        Diagram การใข้ระบบ DGPS (ภาพจาก http://www.jneuroengrehab.com/content/2/1/28/figure/F2)
        • เครื่อง GPS แบบ RTK(Real Time Kinematic) เป็นระบบที่ใช้เครื่อง GPS แบบสองความถี่ ซึ่งจะเป็นเครื่องที่มีราคาสูงมากกว่ากลุ่มอื่น หลักการคล้ายๆกับแบบ DGPS แบบข้างบนมาก แต่จะให้ค่า Accuracry สูงทั้งค่าพิกัดทางราบและทางดิ่ง อยู่ในระดับหลักเซ็นติเมตร วิธีการคือตั้ง GPS (Base) บนหมุดที่ทราบค่าพิกัด ใช้ Radio Modem หรือโทรศัพท์ระบบ GSM ก็ได้ ทำการส่งข้อมูลปรับแก้ไปให้เครื่อง Rover ที่อาจจะใช้ในงานสำรวจ หรืองานก่อสร้างเช่นงานวางสาย Submarine cable งานตอกเสาเข็มในทะเล การรับส่งข้อมูลใช้โปรโตคอล RTCM และก็มีโปรโตคอลอื่นเช่น CMR ของ Trimble เท่าที่ผมใช้งานมาโปรโตคอล CMR (Compact Measurement Data) ของ Trimble นั้นเสถียรกว่าและใช้ band width น้อยกว่า RTCM
    ตั้ง Base Station แบบ RTK ใช้ GPS Trimble เสาด้านขวาคือเสาส่งวิทยุ Radio Modem
      1. การวัดความลึกของน้ำ (Depth Measurement)

        • การใช้สายหยั่งความลึก (Manual Measurement) เป็นวิธีการดั้งเดิมใช้วัดเป็นจุดๆ ถ้าน้ำไม่ลึกมากใช้ท่อนไม้ยาวๆหรือแ่ท่งเหล็กหยั่งลงไปถึงพื้น อ่านระดับจากหมายที่ทำไว้บนไม้หรือแท่งเหล็ก ถ้าเป็นน้ำลึกอาจจะใช้เชือกทำเป็นสายดิ่ง ด้านปลายผูกด้วยก้อนหินหรืออะไรที่หนักๆ ไม่แกว่งไปตามกระแสน้ำได้ง่ายๆ การวัดแบบนี้ใช้เวลามาก ไม่เหมาะกับพื้นที่ใหญ่ๆ
        บางสถานการณ์ก็ต้องวัดแบบแมนวล ในรูปเป็นชายฝั่งที่มีหินโสโครกมากใช้ ต้องใช้เรือยางวัดความลึกด้วยการใช้สายดิ่ง
        บางสถานการณ์ก็เป็นแบบนี้ เรือสำรวจเข้าไม่ได้ก็ต้องใช้การเดินวัดแบบ RTK
        หรือจะเป็นแบบนี้ (ภาพนี้ดูเอาสนุกนะครับ จาก www.bfmcorporation.com)
        • เครื่องหยั่งความลึกของน้ำ (Echo Sounder) ใช้หลักการคลี่นเสียง(Sonar) ความถี่ประมาณ 20 – 200 KHz ทำการส่งคลี่นจากเครื่องเดินทางผ่านมวลของน้ำแล้วสะท้อนกลับที่พื้นท้องน้ำ ถ้าทราบความเร็วของคลื่นเสียง ทราบระยะเวลาที่ส่งและรับคลื่น ก็สามารถหาความลึกได้ ส่วนใหญ่แล้วเครื่อง Echo sounder จะติดตั้งที่เรือส่งคลื่นเสียงออกที่หัว Transducer ปัจจุบันเครื่อง Echo sounder มีทั้งแบบ Single beam และ Multibeam ซึ่ง Echo sounder แบบ Multibeam ยังมีราคาแพงอยู่มากแต่ประโยชน์ของเครื่องมือแบบนี้คือสามารถเก็บความลึกแบบกวาดเป็นแนว ดูรูปด้านล่าง รูปขวาจะเห็นว่าเรือสำรวจวิ่งไปและเลี้ยวกลับในรัศมี 80 เมตร สามารถเก็บข้อมูลความลึกได้หมดจะเห็นโขดหินใต้น้ำอยู่ ซึ่ง 2 วิธีแรกจะไม่เห็น ซึ่งต้องซอยแนวสำรวจเพิ่ม เสียเวลาและค่าใช้จ่ายเพิ่ม การใช้ multibeam สิ่งที่ต้องการเพิ่มขึ้นก็คือเครื่องคอมพิวเตอร์ที่ต้องการพลังการประมวลผลสูงๆและโปรแกรมพิเศษ ที่สามารถเก็บข้อมูลและประมวลผลจุดในรูป Point clound ได้ (หลักการคล้ายกัย Lidar แต่ Lidar ใช้แสง laser เป็นตัวแสกน)
    ลักษณะการวัดหยั่งความลึกน้ำ 3 แบบ รูปด้านซ้ายเป็นการใช้สายดิ่ง รูปกลาง Single beam และรูปด้านขวาเป็น Multibeam (ภาพจาก http://celebrating200years.noaa.gov)
    การสำรวจทางน้ำในแม่น้ำขนาดเล็กใช้เรือหางยาวของชาวบ้าน ระบบพิกัดใช้ RTK ความลึกใช้ Echo sounder แบบ Single beam
    Echo sounder แบบ Single beam ของ ODOM Hydrotrac
      1. เครื่องมือบันทึกภาพพื้นผิวท้องทะเล (Side Scan Sonar) ใช้สำหรับแสกนและบันทึกภาพของท้องทะเล หลักการของเครื่องใช้ปล่อยคลื่นเสียงแบบเดียวกันกับ Echo sounder และครวจจับคลื่นเลียงสะท้อนกลับมาและวิเคราะห์ ส่วนประกอบของเครื่องมีอยู่ 3 ส่วนคือ หัวตรวจแบบลาก(Towfish), สายเคเบิลสำหรับรับส่งข้อมูลจาก Towfish และตัวเครื่องประมวลผล (Topside processing unit) การทำงานส่งคลื่นเสียงที่ Towfish จากอุปกรณ์คล้ายๆรูปพัดหมุนส่งคลื่นกวาดไปด้านข้าง ความถี่ของคลื่นจะอยู่ประมาณ 100-900KHz ความถี่มากจะให้ภาพชัดแต่คลื่นเดินทางไปไม่ได้ไกลมาก ความแรงของคลื่นทีสะท้อนมา เครื่องประมวลผลจะสร้างภาพของวัตถุที่อยู่ที่พื้นผิวท้องทะเล
        • รูปด้านล่างเป็นหลักการทำงานของ side scan sonar จะเห็นว่ามี void ตรงกลาง การแสกนจะกวาดไปด้านข้างจึงเรียกว่า side scan
    หลักการทำงานของ Side Scan Sonar (ภาพจาก http://en.wikipedia.org/wiki/Side-scan_sonar)
    แสดงโมเดลการสำรวจด้วย side scan sonar (รูปจาก http://www.starfishsonar.com/technology/sidescan-sonar.htm)
    Side Scan Sonar รุ่นราคาประหยัด เตรียมพร้อมก่อนจะลากหลังเรือสำรวจ
    แสดงกองหินโสโครกใต้น้ำที่ได้จาก side scan sonar
    ภาพของเรือจมที่ Estonia (ภาพจากผู้ผลิต side scan sonar)
    1. เครื่องตรวจวัดชั้นดินใต้ทะเล (Sub Bottom Profiler) เป็นเครื่องมือสำรวจด้านธรณีวิทยาใช้สำหรับหาชั้นดินใต้ท้องทะเล จากผิวท้องทะเล ลึกลงไปที่ความลึกไม่เกิน 500 เมตร
      • การวัดแบบนี้เป็นส่วนหนึ่งของ seismic แต่จะเป็นการวัดที่ระดับตื้นเรียกว่า Shallow seismic reflection profiling หลักการทำงานจะส่งคลื่นไหวสะเทือนซึ่งเป็นคลื่นเสียงที่มีความถี่ต่างๆลงไปใต้พื้นท้องทะเล เมื่อคลี่นเสียงเดินทางผ่านตัวกลางต่างๆคือ น้ำ ชั้นตะกอน (sediment) ชั้นหินดาน (bedrock) ซึ่งมีคุณสมบัติทางกายภาพที่แตกต่างกัน แล้วสะท้อนกลับขึ้นมายังตัวรับสัญญาณคลื่น เครื่องประมวลผลจะแสดงผลออกมาเป็นภาพหน้าตัดข้างคลื่นไหวสะเทือนแสดงลักษณะ ธรณีวิทยาตามแนวเส้นทางเดินเรือสำรวจ (อ้างอิงจาก http://www.panyathai.or.th/wiki/index.php/การสำรวจแร่)
      • ตัวต้นกำเนิดคลื่นเสียงที่มีช่วงความถี่ต่ำ ใช้ตัวต้นกำเนิดคลื่น 4 แบบ คือ Pinger(ความถี่ 2 – 12 KHz ทะลุทะลวงเข้าไปในชั้นดินตั้งแต่ 10 – 50 เมตร) หรือ Boomer (ความถี่ 300 Hz – 3 KHz ทะลุเข้าไปในชั้นดินได้ไม่เกิน 200 เมตร) Sparker (ความถี่ 50 KHz – 4 KHz ทะลุทะลวงเข้าไปในชั้นดินได้ถึง 500 เมตร) และเทคโนโลยีล่าสุดได้แก่ Chirper (1 KHz – 40 KHz ทะลุทะลวงเข้าไปในขั้นดินไม่เกิน 100 เมตร) ดูรูปด้านล่างประกอบ
      ไดอะแกรมลักษณะการทำงานของ Sub-bottom profiler แต่ละแบบ
      การติดตั้งและเตรียมการ Sub-bottom profiler ยี่ห้อ EdgeTech รุ่น 3100-P
      บนเรือสำรวจมี Topside unit, GPS และคอมพิวเตอร์สำหรับรันโปรแกรม Navigation (1 เครื่อง) และโปรแกรมสำหรับ Sub-bottom profiler 1 เครื่อง)

      สำรวจหาท่อแก็ชของปตท. ที่มาบตาพุดใช้ Sub-bottom profiler ยี่ห้อ EdgeTech

Bathymetric survey ต่างจาก Hydrographic survey อย่างไร

  • Bathymetric survey ใช้ในความหมายที่แคบกว่า Hydrographic survey ที่ผมกล่าวไปข้างต้นแล้ว Bathymetric survey คืองานสำรวจวัดความลึกและสร้างแผนที่ภูมิประเทศของท้องน้ำ แสดงจุดความลึก แสดงเส้นชั้นความลึก
  • ก็จบตอนเรื่อง Hydrographic survey เพียงแค่นี้ตอนหน้าจะมาดูเรื่อง Bathymetric survey กัน มี hardware และ software อะไรกันบ้าง มีขั้นตอนการทำงานอย่างไร