Tag: line

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 9 โปรแกรมคำนวณหาจุดตัด (Intersection)

งานในด้านสำรวจเป็นงานที่ต้องเกี่ยวข้องกับ Geometry บน plane เป็นส่วนใหญ่ ในบางครั้งอาจจะมีโจทย์ที่ต้องคำนวณหา จุดตัดระหว่างเส้นตรงสองเส้น หรือเส้นตรงกับวงกลม หรือวงกลมกับวงกลม โดยที่เส้นตรงอาจจะทราบค่าพิกัดหัวและท้าย หรือทราบค่าพิกัดเพียงหนึ่งจุดและค่าอะซิมัท ส่วนวงกลมนั้นจะต้องทราบค่าพิกัดจุดศูนย์กลางและรัศมี สูตรการคำนวณไม่ได้ยาก สมัยนี้โจทย์พวกนี้เราใช้โปรแกรมด้าน CAD เขียนแบบช่วยเสียเป็นส่วนใหญ่ อย่างที่ผมเคยบอกออกไปครับ ถ้าช่างสำรวจเรามีโอกาสได้ใช้สมองคิดด้าน geometry บ้างและสามารถใช้เครื่องคิดเลขเป็นตัวช่วย ก็จะสามารถพัฒนาทักษะด้านนี้พอสมควร

โปรแกรมคำนวณหาจุดตัด (Intersection)

โปรแกรมเขียนไว้นานแล้ว แต่มีโอกาสมาปรับแก้ใหม่ให้สามารถคำนวณจุดสัมผัส เช่นเส้นตรงกับวงกลมโดยสามารถตั้ง Tolerance ได้ ผมตั้งไว้ที่ 1 มม. ขอขยายความว่าเราสามารถหาจุดตัดเส้นตรงกับวงกลมได้เป๊ะๆ สองจุด แต่ในกรณีที่เป็นจุดสัมผัส (Tangent) นั้นยากโอกาสน้อยมากที่จะคำนวณหาจุดสัมผัสจากโจทย์ที่กำหนดเส้นตรงที่ผ่านจุดและมีทิศทางตามอะซิมัท มาสัมผัสกับวงกลมที่กำหนดจุดศูนย์กลางและรัศมี  ผมจึงตั้ง tolerance ไว้ 1 มม. ถ้าเส้นตรงมาเฉียดจุดสัมผัสนี้ไม่ว่าจะด้านนอกหรือด้านในวงกลมถ้าระยะห่างเส้นตรงห่างจากจุดสัมผัสจริงน้อยกว่า 1 มม. ก็ให้ถือว่าเส้นตรงเส้นนี้สัมผัสกับวงกลม สำหรับไอคอนโปรแกรมเมื่อติดตั้งแล้ว ดังรูปด้านล่าง

ดาวน์โหลดและติตตั้งบนเครื่องคิดเลข

ไปที่หน้าดาวน์โหลด (Download) มองหาโปรแกรมบนเครื่องคิดเลข Casio fx-9860G II SD  ชื่อโปรแกรม Intersection จากนั้นทำการดาวน์โหลดมาจะได้ไฟล์ชื่อ “INSCTEX.G1A” แล้วทำการ copy ไฟล์ตัวนี้ไปยังเครื่องคิดเลขด้วยโปรแกรม Casio FA-124  หรือ copy ผ่านทางตัว SD Card ที่มากับเครื่องคิดเลข

เริ่มต้นใช้งานโปรแกรมหาจุดตัด (Intersection)

กดคีย์ “Main Menu” ของเครื่องคิดเลขใช้คีย์ลูกศรไล่ไปหาไอคอนโปรแกรม Intersection ดังรูป แล้วกดคีย์ “EXE”

เมนูหลักของโปรแกรม

จะเห็นหน้าตาโปรแกรม เหมือนทุกๆโปรแกรมจะมีชื่อโปรแกรม รุ่น พร้อมทั้งบอกลิขสิทธิ์ย่อๆว่าสามารถใช้งานได้ฟรี หรือสำเนาจ่ายแจกให้คนอื่นได้ ซึ่งจะมีเมนูหลักดังนี้

F1 – Set สำหรับเลือกการคำนวณว่าจะเป็นเส้นตรงตัดกับเส้นตรง เส้นตรงกับวงกลม หรือวงกลมกับวงกลม

F2 – IN (Input) จะเป็นการป้อนค่าพิกัดหรืออะซิมัท ตามตัวเลือกที่เลือกไว้ในเมนูแรก (F1 – Set)

F3 – Calc คำนวณหาจุดตัด ซึ่งในเมนูย่อยสามารถแสดงรูปเส้นตรง (Plot) วงกลมพร้อมจุดตัดได้

F5 – Info แสดงเครดิตไลบรารี ที่โปรแกรมนำมาใช้งาน

F6-Exit ออกจากโปรแกรม

ตัวอย่างที่ 1 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Line and Line Intersection)

เป็นการคำนวณหาจุดตัดเมื่อกำหนดเส้นตรงสองเส้นที่มีค่าพิกัดหัวและท้าย ดังรูปด้านล่างเป็นแปลงที่ดิน DEFG ต้องการหาค่าพิกัดจุด “X” ซึ่งเป็นพิกัดศุนย์กลางพื้นที่ที่เกิดจากเส้นตรงจากมุมของแปลงที่ดินลากเป็นเส้นทแยงมุมตัดกัน

เลือกรายการคำนวณ

ที่เมนูหลักของเครื่องคิดเลขกดคีย์ F1-Set จะเห็นตัวเลือกรูปแบบการคำนวณจุดตัด (Intersection Type) เมื่อกดคีย์ “EXE” จะเห็นรายการให้เลือก 4 อย่าง ให้เลือก “Line X Line” ดังรูป กดคีย์ “EXE” จากนั้นกดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักของโปรแกรม กดคีย์ F2-IN ป้อนค่าพิกัดของเส้นตรงสองเส้น ตามโจทย์ข้างต้น กดคีย์ F6 – OK เพื่อออก

คำนวณหาจุดตัด

กลับมาที่เมนูหลักของโปรแกรม จากนั้นกดคีย์ F3 – Calc เพื่อคำนวณหาจุดตัด “X” โปรแกรมจะทวนค่าพิกัดของเส้นตรงเส้นที่ป้อนไว้ก่อนจะแสดงค่าพิกัดจุดตัด ถ้าจุดนี้อยู่บนเส้นตรงทั้ง 2 เส้น กดคีย์ F2 – PgDn เพื่อเลื่อนไปหน้าต่อไป

หน้าสุดท้ายจะเห็นค่าพิกัดจุดตัด “X” N = 1652.560, E = 1739.142

แสดงรูปตัด (Plot)

กดคีย์ F5-Plot เพื่อแสดงเส้นตรงสองเส้นและจุดตัด จอภาพเป็น dot pixel หยาบๆก็ได้ขนาดนี้พอให้เกิดจินตนาการว่าเส้นตรง 2 เส้นวางตัวในลักษณะใดและตัดกันที่ตรงไหน กดคีย์ F6-Done เพื่อออก

ตัวอย่างที่ 2 คำนวณหาจุดตัดระหว่างเส้นตรงกับเส้นตรง (Azimuth and Azimuth Intersection)

การกำหนดเส้นตรงโดยกำหนดจุดและอะซิมัทให้ ในกรณีนี้เส้นตรงจะยาวไม่สิ้นสุด ดังนั้นถ้าเส้นตรงที่กำหนดไม่ขนานกัน ก็มั่นใจได้เลยว่าหาจุดตัดได้แน่ (ต่างจากตัวอย่างแรกที่หาจุดตัดบนเส้นตรงทั้งสองเท่านั้น)

กำหนดเส้นตรงที่เป็น Alignment ของงานถนน เส้นที่ 1 เป็น  ผ่านจุด N: 2641990.928 , E = 231848.514  Azimuth: 35°28′ 1.7433″ เส้นที่ 2 ผ่านจุด N: 2641812.446 E: 231753.041 Azimuth: 9°12′ 20.4212″ คำนวณหาจุดตัด PI (Point of Intersection)

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Azi” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัด

กลับมาที่เมนูหลักโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัด ไม่ลืมว่าป้อนอะซิมัทคั่นด้วยเครื่องหมายลบ  เมื่อเสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณหาจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรม กดคีย์ F3-Calc เพื่อคำนวณหาจุดตัด โปรแกรมจะทวนค่าพิกัดที่ป้อนเข้าไปก่อน กดคีย์ F2-PgDn เพื่อเลื่อนไปหน้าแสดงผลถัดไป

จะได้ค่าพิกัดจุดตัดที่เป็นจุด PI (Point of Intersection N: 2641870.013, E: 231762.371 กดคีย์ F5-Plot จะเห็นรูปร่างเส้นตรงสองเส้น พร้อมจุดตัด “I1” บนหน้าจอภาพกดคีย์ F6-Done สองครั้งเพื่ออก

ตัวอย่างที่ 3 คำนวณหาจุดตัดระหว่างเส้นตรงกับวงกลม (Azimuth and Circle Intersection)

อย่างที่ผมเกริ่นไปข้างต้นว่าเส้นตรงถ้าตัดผ่าเข้าไปในวงกลมจะได้จุดตัดสองเส้น แต่กรณีพิเศษที่เส้นตรงไปสัมผัสกับวงกลมกรณีนี้จะได้จุดตัดคือจุดสัมผัสมาจุดเดียว มาลองดูตัวอย่างแบบนี้ กำหนดให้เส้นตรงผ่านจุด N: 2642178.562, E: 231597.085 Azimuth: 161°8′ 58.2981″ กำหนดวงกลมมีจุดศูนย์กลาง N: 2641772.451, E: 231999.821  รัศมี 249.921 เมตร

เลือกรายการคำนวณ

ที่เมนูหลักของโปรแกรม กดคีย์ F1-Set เลือกรายการคำนวณ “Azi X Cir” กดคีย์ F6-OK เพื่อออก

ป้อนค่าพิกัดและรัศมีวงกลม

ที่เมนูหลักของโปรแกรม กดคีย์ F2-IN เพื่อป้อนค่าพิกัดของเส้นตรงและป้อนค่าอะซิมัท ป้อนค่าพิกัดศูนย์กลางวงกลมพร้อมทั้งรัศมี เสร็จแล้วกดคีย์ F6-OK เพื่อออก

คำนวณจุดตัดและแสดงรูป

ที่เมนูหลักของโปรแกรมกดคีย์ F3-Calc เพื่อคำนวณจะได้ผลลัพธ์แสดงผลมาดังรูปด้านล่าง

สังเกตว่าตรงจุดตัดโปรแกรมจะแสดงว่าได้จุดสัมผัส Tangent มา 1 จุดคือ N: 2641691.702, E: 231763.305 กดคีย์ F5-Plot เพื่อแสดงรูปเส้นตรงและวงกลม ก็พอกล้อมแกล้มการวาดรูปร่างวงกลม ไม่มีไลบรารีของเครื่องคิดเลขต้องอาศัยวาดจุดลงไปตามเส้นรอบวงแทน  จุดสัมผัสแสดงด้วยตัวอักษร “I1” จุดศูนย์กลางวงกลมแสดงด้วยตัวอักษร “C1”

ตัวอย่างที่ 4 คำนวณหาจุดตัดระหว่างวงกลมกับวงกลม (Circle and Circle Intersection)

มาถึงตัวอย่างสุดท้าย ผมจะขอรวบรัดแสดงเฉพาะรูปหน้าจอ กำหนดโจทย์ วงกลมวงแรกมีค่าพิกัดศูนย์กลาง N: 2641210.885, E: 232480.916 รัศมี 525 เมตร วงกลมวงที่ 2 N: 2641256.635 E: 233130.568 รัศมี 250 เมตร คำนวณหาจุดตัดระหว่างวงกลมสองวงนี้

จัดเก็บข้อมูลและเรียกมาใช้ภายหลัง

เพื่อให้ผู้ใช้งานได้สะดวก การจับเก็บตัวแปรเช่นค่าพิกัดที่เคยป้อนไปแล้ว เมื่อเปิดโปรแกรมมาอีกรอบค่านั้นจะยังอยู่ ผมจึงอาศัยวิธีการจัดเก็บไฟล์ลงบน SDCard ที่เสียบไว้ที่เครื่องคิดเลขของเรา เมื่อออกจากโปรแกรม และจออ่านไฟล์มาอีกทีเมื่อเปิดโปรแกรม

ก่อนจะใช้งานได้ต้องมีการเตรียมโฟลเดอร์บน SDCard ดังต่อไปนี้  คือดึง SDCard จากเครื่องคิดเลขมาเสียบบนคอมพิวเตอร์ แล้วทำการสร้างโฟลเดอร์ชื่อ “svdata” ดังรูป แต่ถ้ามีการสร้างมาแล้วก็ไม่จำเป็นต้องทำอะไร

จากนั้นนำ SDCard มาเสียบบนเครื่องคิดเลขอีกครั้ง เมื่อนำไปใช้งานได้สักพักถ้าเอามาเปิดอีกครั้งจะเห็นไฟล์หลายๆไฟล์ มีนามสกุลเป็น “CFG”  หมายถึง config ตัวอย่างถ้าใช้โปรแกรมคำนวณหาจุดตัดนี้ไฟล์ที่จัดเก็บข้อมุลคือ “INTSCT.CFG

ก็ยังมีหลายซีรี่ย์สำหรับโปรแกรมเครื่องคิดเลขในชุดนี้ ก็ติดตามกันได้ต่อไปครับ

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่

ติดปีกเครื่องคิดเลขเทพ Casio fx 9860G II SD ด้วยโปรแกรมภาษาซีบน AddIn ตอนที่ 5 โปรแกรมคำนวณ Resection ด้วยอัลกอริทึ่มสมัยใหม่

การเล็งสกัดย้อน (Resection) และความเป็นมา

ในที่สุดก็มาถึงตอนที่ 5 ตอนที่ผมใช้เวลามากที่สุดในการ implement อัลกอริทึ่มที่ใช้คำนวณปัญหา Resection จาก 3 จุดที่กำหนด (Three Points Resection Problem) เป็นที่ทราบกันดีว่าการคำนวณ Resection นั้นนักคณิตศาสตร์ได้คิดค้นกันมาหลายร้อยปีแล้ว มีอัลกอริทึ่มรวมๆกันไม่น้อยกว่า 500 อัลกอริทึ่ม แต่บางอัลกอริทึ่มนั้นอายุเก่าแก่มากใช้การคำนวณหาด้วยการวาดลงบนกระดาษ ถ้าจะคัดออกมาจริงๆที่ใช้กันในปัจจุบันมีประมาณ 18 อัลกอริทึ่มหลักๆ และสามารถนำมา implement เป็นโปรแกรมในคอมพิวเตอร์ได้ ก่อนจะไปต่อกันลึกๆมาดูกันว่า Resection คืออะไร

การเล็งสกัดย้อน(Resection) คือการวัดพิกัดจุดตั้งกล้องจากสถานีที่ทราบค่าพิกัด 3 สถานี ตามตัวอย่างได้แก A, B และ C และวัดมุมราบคือมุม α และ β ตามลำดับ

ผมคนรุ่นเก่ายังทันเครื่องมือวัดมุม Sextant ผมทัน Sextant นี้ในช่วงทำงานใหม่ๆ โดยที่ลงเรือไปในทะเลกับพี่ๆช่างสำรวจของกรมเจ้าท่า ตอนนั้นเพิ่งเรียนจบมาใหม่ ยุคนั้น GPS/GNSS ยังไม่เป็นที่รู้จัก การวัดตำแหน่งของเรือสำรวจใช้เครื่องมือ Sextant ที่อาศัยหลักการของ Resection มาประยุกต์ใช้ บนเรือสำรวจจะมีเจ้าหน้าที่ 2 คน คนแรกจะส่องสถานี A และ B เพื่อวัดมุม α และคนที่สองจะส่องสถานี B และ C เพื่อวัดมุม β สองคนนี้ตามหลักการแล้วต้องขี่คอกันแต่จริงๆคงไม่มีใครทำเพียงแต่นั่งใกล้ๆกัน การใช้ Sextant วัดตำแหน่งเรือต้องอาศัยความชำนาญอย่างสูง เพราะเรือไม่อยู่นิ่งกับที่เพราะคลื่มลม จะปะทะให้เคลื่อนไหวตลอดเวลา

เมื่อการวัดมุมเสร็จสิ้นลงทั้งสองคนจะจดค่ามุม ∝ และ ∅ พร้อมๆกัน การใช้ Sextant ควบคู่ไปกับกับใช้เครื่องมือวัดความลึกของท้องน้ำจำพวก Echo sounder งาน post processing ในออฟฟิศได้แต่การนำค่ามุม α และ β มาคำนวณหาค่าพิกัดแตละจุด จากนั้นก็จัดทำแผนที่แสดงความลึกของแม่น้ำหรือทะเลในบริเวณที่ทำการสำรวจ ถึงแม้กระนั้นเครื่องมือ Sextant จะให้ค่าความละเอียดด้านมุมไม่ดีนัก แต่ค่าพิกัดที่ได้สมัยนั้นก็เพียงพอสำหรับงานในทะเลหรือแม่น้ำ

หัวข้อต่อๆไปจะกล่าวถึงที่ไปที่มาของสูตรที่ผมใช้สำหรับเครื่องคิดเลข fx-9860G ถ้าผู้อ่านไม่สนใจก็ข้ามไปที่การใช้โปรแกรมเครื่องคิดเลขด้านท้ายๆเลยครับ

หลักการคำนวณ Resection

อัลกอริทึ่มที่ผมกล่าวไปนั้นตั้งแต่ยุคอดีตกาลนั้นมากกว่า 500 อัลกอริทึ่ม แต่ส่วนใหญ่แล้วอาศัยหลักการคล้ายๆกันคือใช้หลักวงกลมสามวงตัดกันที่จุด P วงแรกจะลากผ่านจุด A-P-B วงที่สองลากผ่านจุด B-C-P วงที่สามลากผ่าน C-P-A ดังรูปด้านล่าง

ภาวะเอกฐาน (Singularity) ที่อัลกอริทึ่มล้มเหลว

ผมขอยืมคำแปล Singularity ที่แปลว่าภาวะเอกฐานจากเรื่องหลุมดำในทฤษฎีฟิสิกส์ควอนตัมหน่อย เพราะมันได้ใจความคือภาวะที่ทฤษฎีทางคณิตศาสตร์ล้มเหลว คือเหมือนกับพลัดตกลงไปในหลุมดำประมาณนั้น

การคำนวณ Resection ที่ใช้วงกลมสามวงมาตัดกันดังรูปด้านบน แต่จะเกิดอะไรขึ้น ถ้าจุดทั้ง 4 จุดนี้อยู่บนวงกลมวงเดียวกัน ก็หมายความว่าวงกลมสามวงนั้นจะซ้อนทับกันทั้งสามวง จนไม่สามารถหาจุดตัดกันได้ ดังนั้น Resection ไม่มีสูตรหรืออัลกอริทึ่มไหนในบรรณพิภพนี้ที่สามารถคำนวณได้บนภาวะเอกฐาน

ภาวะเอกฐานเสมือน (Pseudo Singularity)

ภาวะเอกฐานเสมือนเป็นสภาวะที่จุด P มาอยู่บนเส้นตรงระหว่าง A-B หรือ B-C หรือ A-C ด้านล่างจะเป็นกรณีจุด P อยู่บนเส้นตรงระหว่างจุด B และ C จะทำให้มุม β มีค่ากับ π เรเดียน (หรือเท่ากับ 180 องศา) หรือถ้าขยับจุด P ให้เลยออกจากจุด B แตยังอยู่ในแนวเส้นตรง ในกรณีนี้จะได้ มุม β = 0

ภาวะเอกฐานเสมือนนี้สูตรหลายๆสูตรไม่สามารถหาค่าได้เช่นสูตร Tienstra Method

อัลกอริทึ่มสมัยใหม่ (Modern Algorithm)

เท่าที่ผมทราบในปัจจุบันตัวที่ทำให้เกิดสูตรคณิตศาสตร์ใหม่ๆมาจากวงการ Robot ที่ต้องการให้ค่าพิกัดของหุ่นยนต์ในการเคลื่อนไหวได้แม่นยำ เนื่องจากหุ่นยนต์ทำงานอยู่ในอาคาร จึงทำให้ระบบให้ค่าพิกัด GNSS ไม่สามารถนำมาใช้งานได้ หุ่นยนต์ในที่นี้ไม่ได้หมายถึงหุ่นยนต์ที่ติดตั้งแบบอยู่กับที่ในโรงงานนะครับ แต่เป็นหุ่นยนต์ที่สามารถเคลื่อนไหวได้อิสระ ตัวอย่างง่ายๆได้แก่การแข่งขันหุ่นยนต์ของนักศึกษาในอินดอร์ อดึตกาลสูตรเหล้านี้มาจากนักคณิตศาสคร์ แต่สำหรับสูตรสมัยใหม่เนื่องจากความต้องการใช้งานในวงการหุ่นยนต์ ทำให้คนที่คิดค้นสูตรสมัยใหม่กลายเป็นวิศวกรไฟฟ้าหรือวิศวกรเครื่องกล เท่าที่ผมศึกษางานวิจัยในเบื้องต้นผมสนใจงานของ

    1. A New Three Object Triangulation Algorithm for Mobile Robot Positioning โดย Vincent Pierlot and Marc Van Droogenbroeck ทั้งสองท่านจบวิศวกรไฟฟ้า งานวิจัยนี้มีโค้ดภาษา C ด้วย แต่เนื่องจากลิขสิทธิ์ที่ระบุให้ใช้ในวงการศึกษาหรือใช้งานส่วนตัวเท่านั้น ผมจึงไม่สามารถนำโค้ดมาใช้งานได้เพราะยังกำกวม ความจริงงานทั้ง 2 ท่านได้รวบรวมอัลกอริทึ่มรวมทั้งของตัวเองด้วยทั้งหมด 18 อัลกอริทึ่มและ implement มาเป็นโค้ด พร้อมทั้งวัด benchmark ว่าใค้ดใครเร็วที่สุด ก็ตามคาดหมายโค้ดที่ทั้งสองท่านคิดค้นมานั้นเข้าวิน แต่สำหรับผมแล้วความต่างมันหนึ่งในพันส่วนของวินาทีอาจจะจำเป็นสำหรับงานให้ตำแหน่งหุ่นยนต์ที่ต้องมีการคำนวณตำแหน่งแบบ real time แต่สำหรับงานสำรวจในภาคสนามความจำเป็นกลับต่างออกไป
    2. New Method That Solves the Three-Point Resection Problem Using Straight Lines Intersection โดย Josep M. Font-Llagunes and Joaquim A. Batlle ผมชอบความคิดของสองท่านนี้ดูจากโพรไฟล์แล้วจบวิศวกรเครื่องกล แต่เนื่องจากเอกสารเข้าใจยากไปนิด ผมกลับใช้เวลาแกะอัลกอริทึมโดยใช้เวลาพอสมควรกว่าจะออกมาเป็นโค้ดได้ โปรแกรมสามารถคำนวณในสภาวะเอกฐานเสมือนได้

หลักการคำนวณโดยย่อ

ผมไม่มีเวลาที่จะศึกษาสูตรในเบื้องลึกให้กระจ่างมากนั้นแต่เน้น implement มาเป็นโค้ดภาษา C ดังนั้นความเข้าใจจึงอยู่ในระดับผิวเผิน ต่อไปผมจะบอกเล่าสิ่งที่ผมเข้าใจแบบจำกัดจำเขี่ย เราจะมาเริ่มต้น สมมติว่าตอนนี้ถ้าทราบค่าพิกัด P แล้วเราสามารถหาค่าอะซิมัทจากสถานี A, B และ C ไปยังจุด P ได้ง่ายๆ ตามรูปด้านล่าง

ค่าอะซิมัทของสถานีที่ทราบค่าพิกัด

1.คำนวณหาค่าอะซิมัทโดยประมาณ (Θ)

แต่ในชีวิตจริงค่าพิกัด P เป็นสิ่งที่เรายังไม่ทราบดังนั้นสูตรคำนวณนี้จะมีการหาค่าโดยประมาณก่อน Θ = θ – โดย  คือค่าเบี่ยงเบนไปจากค่าจริงจากที่เราประมาณ ถ้าทุกๆเส้นเบี่ยงเบนไป  เราสามารถลากเส้นไปตัดกันเป็นรู)สามเหลี่ยมเล็กๆ แต่ถ้า  ที่ประมาณการณ์ไว้มีขนาดเบี่ยงเบนไปมาก ก็จะได้ขนาดสามเหลี่ยมนี้ใหญ่ขึ้น สามเหลี่ยมนี้ทางผู้คิดค้นเรียกว่า error triangle จุดตัดแทนที่ด้วย PAB, PBC และ PAC

2.คำนวณหาค่าพิกัดของ Error Triangle

ค่าพิกัดของจุดตัด P นี้สามารถคำนวณได้จากสูตร

โดยที่ mA = cot(Θ), mB = cot(Θ – α) และ mC = cot(Θ – α -β) ไม่ลืมว่า Θ คือค่าอะซิมัทโดยประมาณ

3.คำนวณหาค่าพิกัดของ Centers Triangle

ถ้าจากจุด P ลากเส้นตรงไปหาสถานีที่ทราบค่าพิกัดแล้วแบ่งครึ่งลากเส้นตั้งจาก เราจะได้สามเหลี่ยมอีกชุดหนึ่งเรียกว่า centers triangle  และเป็นสามเหลี่ยมคล้ายสามเหลี่ยม error triangle ดังนั้นความสัมพันธ์ด้านมุมและระยะระหว่างสามเหลี่ยมสองรูปนี้สามารถคำนวณได้ ดังนั้นค่าพิกัดของ centers triangle สามารถคำนวณหาค่าพิกัดจุดตัด CAB, CBC และ CAC ได้จากสูตรดังต่อไปนี้

4.คำนวณมุมเบี่ยงเบน

ค่าเบี่ยงเบนเมื่อคำนวณมาได้แล้วสามารถนำไปบวกหรือลบกับค่าอะซิมัทประมาณการในครั้งแรกจะได้ค่าอะซิมัทที่ถูกต้อง

สามารถคำนวณสมการ (9) จากระยะทางแต่ละด้านของ error triangle และ centers triangle เช่นตัวอย่าง |δθ| = arcsin(ระยะทางระหว่างจุด PAB– PBC / ระยะทางจุด CAB– CBC )

หรือในสมการ (10) สามารถใช้พื้นที่ของสามเหลี่ยมสองรูปนี้ได้

5.คำนวณหาเครื่องหมายมุมเบี่ยงเบน

ก่อนหน้านี้ที่แสดงค่าที่คำนวณได้ในสมการ (9) และ (10) จะเห็นว่าติดเครื่องหมาย absolute ไว้คือยังไม่ได้คิดเครื่องหมาย ส่วนเครื่องหมายมุมเบี่ยงเบนหาได้ดังนี้

ทางผู้พัฒนาแสดงทิศทางของ error triangle เมื่อเทียบ center triangle ตามเครื่องหมายของ error triangle ดังนี้

อาจจะดูยากไปนิดเป็นการคูณไขว้กัน ดูตัวอย่างเพื่อความง่าย

sign = (xPAC-xPBC)*(yCAC-yCBC) – (xCAC-xCBC)*(yPAC-yPBC)

ค่าของ  sign จะออกมาเป็นบวกหรือเป็นลบ แล้วจะเอาเครื่องหมายนี้ไปใส่ให้สมการในข้อต่อไป

6.คำนวณหาอะซิมัทที่ถูกต้อง

สมการ θ=Θ +sign(dθ)

7.คำนวณหาพิกัดของจุดตัด Resection

ถ้าจุดตัดไม่ตกหลุมดำ ก็สามารถคำนวณหาจุดตัดได้จาก 1 ใน 3 สมการ ของสมการ (1), (2) หรือ (3) เช่นตัวอย่าง

mA = cot(θ)
mB = cot(θ – α)
xP = (mA x xA – mB x xB – yA + yB) / (mA – mB)
yP = mA x (xP – xA) + yA

การคำนวณเมื่อจุดตัดตกภาวะเอกฐานเสมือน

จะมี 3 กรณีคือ

1) ค่า α = 180 หรือ α = 0

2)ค่า β = 180 หรือ β = 0

3)ค่ามุม α+β = 180 หรือ α+β = 0

จากการคำนวณในข้อ 3 จะสังเกตในสูตร (5) จะมีตัวคูณด้วย cot(α) อยู่ ในกรณีนี้จุดตัด P อยู่บนเส้นตรงระหว่างจุด A และ B ดังนั้นมุม α = 180 องศาจะทำให้ cot(α) ไม่สามารถคำนวณได้เพราะค่าเป็นอนันต์ (infinity)  ในเคสนี้เราจะไม่คำนวณหาจุด CAB เพราะหาไม่ได้นั่นเอง แต่จุด CBC และ CAC ก็ยังหาได้ปกติ ดังนั้นในกระบวนการสุดท้ายค่าพิกัดของจุด P สามารถคำนวณได้จากการใช้สมการอีก 2 สมการคือสมการ (2) และ (3)

ไม่ใช้สมการ (1) เพราะมีค่า (mA – mB)  = 0 ทำให้ห่าค่า xP ไม่ได้

ข้อสังเกต สามารถลากวงกลมได้แค่ 2 วงเท่านั้นคือวงกลม A-P-C และ B-P-C ส่วนอีกวงลากไ่ม่ได้เพราะว่า A-P-B เป็นเส้นตรง

ดาวน์โหลด (Download) โปรแกรมสำหรับเครื่องคิดเลข fx-9860G

ไปที่หน้าดาวน์โหลดมองหาโปรแกรม Resection เมื่อดาวน์โหลดมาแล้วจะได้ไฟล์ “RESCTION.G1A” ใช้โปรแกรม FA-124 ทำการโอนโปรแกรมเข้าเครื่องคิดเลข (ดูโพสต์เก่าได้วิธีการนี้) จะเห็นไอคอนปรากฎที่หน้า AddIn ดังรูป

กรณีที่ 1 ตัวอย่างงานรังวัดในงานสำรวจทั่วไป (Survey Engineering Example)

กำหนดค่าพิกัดของสถานี A, B และ C ดังนี้

วัดค่ามุม ∝ และ ∅ จากกล้อง total station ได้ดังนี้ ∝= 40°35’22.11“ และค่ามุม ∅ = 9°18’31.84“ ที่ไอคอนโปรแกรมกดคีย์ “EXE” เข้าไปป้อนค่าพิกัดสถานีทั้งสามดังนี้

จากนั้นป้อนมุมภายใน

โปรแกรมจะคำนวณหาค่าพิกัดของจุดตัด โดยที่แจ้งสถานะมาก่อนว่าคำนวณได้ Resection Solved…

กรณีที่ 2 ตัวอย่างงานที่จุดตัดตกอยู่ในภาวะเอกฐานเสมือน (Pseudo Singularity)

นี่เป็นกรณีพิเศษจริงๆ เพราะว่าหลายๆสูตรคำนวณด้วยวิธีนี้ไม่ได้เช่นสูตร Tienstra กำหนดค่าพิกัดสถานี  A (2639303.349mN, 231605.043mE) ค่าพิกัดสถานี B (2639271.845mN, 231419.755mE) และสถานี C (2639180.389mN, 231561.178mE) มุมที่รังวัดมา α = 180° มุม β = 105°3’14.94“

ข้อสังเกตุถ้ามุม α เท่ากับ 180 แสดงว่าจุดตัดตกอยู่บนเส้นตรงระหว่างสถานี A และ B แต่เขยิบเข้าไปใกล้ B มากกว่าเพราะว่ามุม β เป็นมุมป้าน มาดูการคำนวณจากเครื่องคิดเลข เมื่อเรียกโปรแกรมมาแล้วป้อนค่าพิกัดสถานีตามลำดับ A, B และ C แล้ว

จากนั้นป้อนมุม α และ β

ผลลัพธ์ที่ได้

กรณีที่ 3 ตัวอย่างจุดตัดตกหลุมดำในภาวะเอกฐาน (Singularity)

กรณีสุดท้าย โอกาสที่จะเจอแบบนี้คือสถานีทั้งสามสถานีอยู่บนวงกลมเดียวกันและจุดที่ตั้งกล้องที่ต้องการทราบค่าพิกัดและยังมาอยู่บนวงกลมเดียวกันทั้ง 4 จุด ในชีวิตจริงมีโอกาสน้อยมากเหมือนกับถูกล็อตเตอรีรางวัลที่ 1 ยังไงยังงั้น มาลองคำนวณดู

กำหนดค่าพิกัดสถานี A (2369180.389mN, 231561.178mE) สถานีพิกัดสถานี B (2639303.349mN, 231605.093mE) และสถานี C (2639478.455mN, 231509.233mE) วัดมุม α = 29°32’23.9“และ β = 18°48’43.9“

เมื่อเข้าไปในโปรแกรมป้อนค่าพิกัด A, B และ C ตามลำดับ

จากนั้นป้อนมุม α และ β ตามลำดับ

สุดท้ายโปรแกรมไม่สามารถคำนวณหาพิกัดจุดตัดได้และแสดงว่า Resection unsolved…

เครดิต (Credit)

ก็ยกเครดิตสำหรับอัลกอริทึ่มหรือสูตรคำนวณนี้ให้กับสองท่านคือ Josep M. Font-Llagunes and Joaquim A. Batlle.

ซอร์สโค้ดสูตรคำนวณ (Sourcecode)

ผมยกมาเฉพาะสูตรคำนวณตั้งชื่อฟังก์ชั่น straightLineIntersection สำหรับคนที่สนใจเรื่องโปรแกรมมิ่งก็ศึกษาโค้ดภาษาซีกันได้ครับ ไม่มีอะไรยุ่งยาก

/* Algorithm based on Josep M. Font-Llagunes and Joaquim A. Batlle.
  - Input angles are radians. 
  - Internal angles is clock-wise direction.
  - A, B and C must be located from right to left respectively.*/
bool straightLineIntersection(double *xP, double *yP,
				double alpha_AB, double alpha_BC,
				double xA, double yA, double xB, double yB, double xC, double yC)
{
  double mA, mB, mC; //slope of lines.
  double cot_12, cot_23, cot_31;
  double pAB, pAC, pBC; //Euclidean distance between station.
  double estB; //Estimated angle A-B-C.
  double xPAB, yPAB, xPBC, yPBC, xPAC, yPAC; //error triangle.
  double xCAB, yCAB, xCBC, yCBC, xCAC, yCAC; //center of triangle.
  double deltatheta;
  double theta; //first estimated and actual azimuth from P to A at the end.
  double AP, AC;
  double sign;
  double dPAC_PBC, dCAC_CBC;
  double dPAB_PBC, dCAB_CBC;
  double dPAB_PAC, dCAB_CAC;

  pAB = sqrt((xA-xB)*(xA-xB) + (yA-yB)*(yA-yB));
  pAC = sqrt((xA-xC)*(xA-xC) + (yA-yC)*(yA-yC));
  pBC = sqrt((xB-xC)*(xB-xC) + (yB-yC)*(yB-yC));

  estB = acos((pAB*pAB + pBC*pBC - pAC*pAC) / (2*pAB*pBC));
  //Check if found absolutely singularity then stop and return.
  if (((estB + alpha_AB + alpha_BC - PI) >= -0.0001) and 
      ((estB + alpha_AB + alpha_BC - PI) <= 0.0001))
    return false;

  /*first guess (theta), try to avoid for cot(angle) 
    when angle == PI or zero).*/ 
  theta = alpha_AB + alpha_BC/2.0;    
  mA = cot(theta);
  mB = cot(theta - alpha_AB);
  mC = cot(theta - alpha_AB - alpha_BC);
	
  //calc coordinates of error triangle.
  xPAB = (mA*xA - mB*xB - yA + yB) / (mA - mB);
  yPAB = mA*(xPAB - xA) + yA;  
  xPBC = (mB*xB - mC*xC - yB + yC) / (mB - mC);
  yPBC = mB*(xPBC - xB) + yB;
  xPAC = (mA*xA - mC*xC - yA + yC) / (mA - mC);
  yPAC = mA*(xPAC - xA) + yA;
	
  dPAC_PBC = sqrt((xPAC-xPBC)*(xPAC-xPBC) + (yPAC-yPBC)*(yPAC-yPBC));
  dPAB_PBC = sqrt((xPAB-xPBC)*(xPAB-xPBC) + (yPAB-yPBC)*(yPAB-yPBC));
  dPAB_PAC = sqrt((xPAB-xPAC)*(xPAB-xPAC) + (yPAB-yPAC)*(yPAB-yPAC));
  
  AP = ((xPAB - xPBC) * (yPBC - yPAC) - (xPBC - xPAC) * (yPAB - yPBC))/* / 2*/ ;
  AP = (AP < 0.0) ? -AP : AP;

  /* The next 3 Cases are psudosingularities.
    
    1st case: P is aligned with A & B.Therefore cannot calc PAB & CAB.*/
  if (alpha_AB == PI || alpha_AB == 0.0){ /* P is aligned on A & B.*/
    /* cot(alpha_AB) is infinity */
    cot_23 = cot(alpha_BC);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

    //distance CAC to CBC (center triangle).
    dCAC_CBC = sqrt((xCAC-xCBC)*(xCAC-xCBC)+(yCAC-yCBC)*(yCAC-yCBC));

    deltatheta = asin(0.5*(dPAC_PBC/dCAC_CBC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
    sign = (xPAC-xPBC)*(yCAC-yCBC) - (xCAC-xCBC)*(yPAC-yPBC);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mB = cot(theta - alpha_AB);
    mC = cot(theta - alpha_AB - alpha_BC);
  
    *xP = (mB * xB - mC * xC - yB + yC) / (mB - mC);
    *yP = mB * ((*xP) - xB) + yB; 
    return true;
  }else if ((alpha_BC == PI) || (alpha_BC == 0)){ 
    /* 2nd case: P is aligned on B & C.
                 cot(alpha_BC) is infinity */
    cot_12 = cot(alpha_AB);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

    //distance CAB ot CAC (center triangle)
    dCAB_CAC = sqrt((xCAB-xCAC)*(xCAB-xCAC)+(yCAB-yCAC)*(yCAB-yCAC));

    deltatheta = asin(0.5*(dPAB_PAC/dCAB_CAC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
    sign = (xPAB-xPAC)*(yCAB-yCAC) - (xCAB-xCAC)*(yPAB-yPAC);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
    *xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
    *yP = mA * ((*xP) - xA) + yA; 
    return true;
  }else if (((alpha_AB + alpha_BC) == PI) || ((alpha_AB + alpha_BC) == 0)){
    /* 3rd case: P is aligned on A & C. 
       cot(alpha_AB+alpha_BC) is infinity.*/
    cot_12 = cot(alpha_AB);
    cot_23 = cot(alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);

    //distance CAB ot CBC (center triangle)
    dCAB_CBC = sqrt((xCAB-xCBC)*(xCAB-xCBC)+(yCAB-yCBC)*(yCAB-yCBC));

    deltatheta = asin(0.5*(dPAB_PBC/dCAB_CBC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
	sign = (xPBC - xPAB) * (yCBC - yCAB) - (xCBC - xCAB) * (yPBC - yPAB);
	if (sign < 0.0 ) deltatheta = -deltatheta;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
	*xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
	*yP = mA * ((*xP) - xA) + yA;   
    return true;
  }else {
    /* Normal case can be calculated by other methods as well.*/
    cot_12 = cot(alpha_AB);
    cot_23 = cot(alpha_BC);
    cot_31 = cot(alpha_AB+alpha_BC);
   
    //calc coordinates of center triangle.
    xCAB = 0.5 * (xA + xB + (yA - yB) * cot_12);
    yCAB = 0.5 * (yA + yB + (xB - xA) * cot_12);
    xCBC = 0.5 * (xB + xC + (yB - yC) * cot_23);
    yCBC = 0.5 * (yB + yC + (xC - xB) * cot_23);
    xCAC = 0.5 * (xA + xC + (yA - yC) * cot_31);
    yCAC = 0.5 * (yA + yC + (xC - xA) * cot_31);

	AC = ((xCAB - xCBC) * (yCBC - yCAC) - (xCBC - xCAC) * (yCAB - yCBC))/* / 2*/ ;
	AC = (AC < 0.0) ? -AC : AC;

    deltatheta = asin(0.5*sqrt(AP/AC));
	deltatheta = (deltatheta < 0.0) ? -deltatheta : deltatheta; 
	sign = (xPBC - xPAB) * (yCBC - yCAB) - (xCBC - xCAB) * (yPBC - yPAB);
	if (sign < 0.0 ) deltatheta = -deltatheta ;   
    theta += deltatheta;

    mA = cot(theta);
    mB = cot(theta - alpha_AB);
  
	*xP = (mA * xA - mB * xB - yA + yB) / (mA - mB);
	*yP = mA * ((*xP) - xA) + yA;  
    return true;
  }
}
Surveyor Pocket Tools – Update เพิ่มโปรแกรมคำนวณสเกลแฟคเตอร์ (Line Scale Factor)

Surveyor Pocket Tools – Update เพิ่มโปรแกรมคำนวณสเกลแฟคเตอร์ (Line Scale Factor)

Today, GPS has thrust surveyors into the thick of geodesy, which is no longer the exclusive realm of distant experts. Thankfully, in the age of the microcomputer, the computational drudgery can be handled with software packages. Nevertheless, it is unwise to venture into GPS believing that knowledge of the basics of geodesy is, therefore, unnecessary. It is true that GPS would be impossible without computers, but blind reliance on the data they generate eventually leads to disaster.” วาทะของ  Jan Van Sickle (หนังสือ “GPS and GNSS for Geospatial Professionals, ปี 2001, หน้า 126) ผมถอดความคร่าวๆได้ว่า “ปัจจุบัน GPS ได้ผลักดันให้ช่างสำรวจเข้าไปอยู่ในความหนาแน่นของเรื่องจีโอเดซี ซึ่งไม่ใช่่เรื่องสำหรับผู้เชี่ยวชาญแต่เพียงผู้เดียวอีกต่อไป ต้องขอบคุณสำหรับยุคคอมพิวเตอร์ขนาดเล็ก งานคำนวณหนักสามารถจัดการได้ด้วยโปรแกรมประยุกต์ แต่อย่างไรก็ตาม เป็นการไม่ฉลาดที่จะคิดว่าการศึกษาพื้นฐานด้าน GPS จะไม่จำเป็น และก็เป็นจริงที่ว่าการคำนวณของอุปกรณ์ GPS เป็นไปไม่ได้เลยที่จะไม่ใช้คอมพิวเตอร์ แต่ความเชื่อมั่นอย่างมืดบอดในข้อมูลที่ (GPS) สร้างขึ้นมาจะนำไปสู่ความหายนะได้

โปรแกรม Line Scale Factor

  • เราทราบกันมาดีว่าแผนที่ในระบบพิกัดฉากเราไม่สามารถจะหลีกเลี่ยงความเพื้ยน (distortion) ไปได้ เนื่องจากที่เราพยายามแสดงลักษณะทางกายภาพของสิ่งของที่อยู่บนผิวโค้งบนทรงรีไปยังแผ่นระนาบแบบกระดาษ จำต้องใช้สเกลแฟคเตอร์ที่ไม่คงที่และแปรผันเป็นระบบมาช่วยในการแปลงเหล่านี้ ดังนั้นเราต้องมีวิธีการจัดการและใช้งานที่เหมาะสม โดยที่ไม่ทำให้ค่า error เกินกว่าที่จะยอมรับได้
  • Line Scale Factor คือโปรแกรมที่คำนวณค่าสเกลแฟคเตอร์เฉลี่ยโดยใช้ค่าระดับและค่าพิกัดของจุดเริ่มต้นและจุดปลาย กระบวนการคำนวณจะประกอบไปด้วยสองขั้นตอน
    1. ค่าเฉลี่ยของ Elevation scale factor (ESF) – จะคำนวณ ESF  ที่จุดเริ่มต้นและจุดปลาย รวมถึงคำนวณ ESF ที่จุดกึ่งกลางเส้นด้วย โดยใช้ค่าระดับเฉลี่ย การคำนวณหาค่าเฉลี่ยของ ESF จะเป็นการคำนวณในลักษณะเชิงเส้น (linear)
    2. ค่าเฉลี่ยของ Grid scale factor (GSF) – หลักการพิจารณาว่าจะใช้ค่าเฉลี่ยแบบใดให้ถือหลักการดังนี้
      • ถ้าเส้นยาวน้อยกว่า 1 กม. ใช้ Point scale factor ได้เลย (ใช้โปรแกรม “Point Scale Factor” ของผมที่ลงบทความมาก่อนหน้านั้นนี้ อ่านได้ที่ ลิ๊งค์ นี้)
      • ถ้าเส้นยาวมากกว่า 1 กม. แต่น้อยกว่า 4 กม. แนะนำให้หาค่าเฉลี่ย(หารสอง)จาก Point scale factor ที่จุดต้นทางและปลายทาง
      • ถ้าเส้นยาวมากกว่าหรือเท่ากับ 4 กม. แนะนำให้ใช้สูตรของ Simpson 1/6 มาช่วยหาค่าเฉลี่ย เพราะว่าไม่เป็นเชิงเส้น คือเส้นตรงระหว่างจุดสองจุดบนระนาบพิกัดฉาก เมื่อย้อนเอาไปเขียนลงบนทรงรีจะเป็นเส้นโค้งจีโอเดสิค (geodesic) ดังนั้นการคำนวณค่าเฉลี่ยจะให้น้ำหนักตรงกลางเส้นมากที่สุด (เพราะโค้งมากที่สุด) ลองดูสูตรด้านล่างจะเห็นว่าจุดต้นและจุดปลายให้น้ำหนักแค่หนึ่งส่วนในหกส่วน ส่วนตรงกลางให้ถึงสี่ส่วนในหกส่วน

average_scale_factor.png

ดาวน์โหลดและติดตั้ง

  • จะทำการดาวน์โหลดให้มองที่ด้านขวาดูตรงส่วน “ดาวน์โหลด (Download)” มองหา “Surveyor Pocket Tools” แนะนำให้ดาวน์โหลด build 480 ขึ้นไปเนื่องจากมีการแก้ไขบั๊กไปหลายจุด เมื่อดาวน์โหลดมาแล้วจะได้ไฟล์ zip แล้ว unzip ออกมาจะได้ไฟล์ setup นำไปติดตั้งได้ง่ายๆไม่กี่คลิก
  • หลังจากติดตั้งแล้วก็ให้เปิดโปรแกรม “Surveyor Pocket Tools” มองหาไอคอน “Line Scale Factor” แล้วดับเบิ้ลคลิกเพื่อเรียกโปรแกรมมารัน

python_2017-02-25_10-01-27

Surveyor Pocket Tools_2017-02-25_15-26-52.png

  • จุดมุ่งหมายของโปรแกรมนี้ เพื่อให้หาสเกลแฟคเตอร์ของเส้นตรงทำได้ง่าย แค่ป้อนค่าพิกัดและค่าระดับของจุดที่ 1 และจุดที่ 2 โปรแกรมจะคำนวณมาให้ทันที การประยุกต์ใช้สามารถนำตัวเลขนี้ไปใช้ในงานสนามได้ในกรณีที่งานอยู่บนระบบพิกัดฉาก UTM
  • หน้าตาของโปรแกรมถอดแบบมาจาก “Point Scale Factor” แต่ในที่นี้มีสองจุดคือจุดต้นทางและจุดปลายทาง ให้ป้อนค่าพิกัดและค่าความสูงของจุด ความสูงเลือกได้ว่าเทียบกับจีออยด์ (รทก.) หรือความสูงเมื่อเทียบกับทรงรี

โครงสร้างและส่วนประกอบ

  • ถ้ามองเผินๆเหมือนรกหูรกตา แต่จริงๆแล้วก็ไม่มีอะไร เริ่มจากตั้งระบบพิกัดให้ตรงก่อน แล้วกรอกข้อมูลจุดที่ 1 เข้าไปและตามด้วยจุดที่ 2 จากนั้นทำการคำนวณ อาจจะปักหมุดดูที่ google maps หรือไม่ก็ที่ google earth หรือถ้าต้องการเก็บค่าพิกัดก็คลิกได้ที่ไอคอนรูปหมุดเครื่องหมายบวกสีแดง

introduction_lsf.png

วิธีการใช้งาน

  • จุดพิกัดที่ยกมาเป็นตัวอย่างถือว่าเป็นกรณีศึกษา พื้นที่เป็นงานก่อสร้างมอเตอร์เวย์ช่วงใกล้ถนนบายพาสของนครราชสีมา เนื่องจากสเกลแฟคเตอร์มีค่าสูงมาก (มากขนาดกล้อง Total Station ยี่ห้อหนึ่งที่อั้นตัวเลข scale factor ไว้ที่ช่วง 0.9996 – 1.000400  คือไม่ยอมให้ป้อนเกินค่านี้ ก็ไม่ทราบว่าเหตุผลว่าทำไมต้องจำกัดตัวเลขไว้แค่นี้ )
  • จุดที่ 1 ชื่อ “MTW-01” N=1657451.026, E = 808709.698, Elevation = 222.461 m. (รทก.) จุดที่ 2 ชื่อ “MTW-02” N=1658811.819, E=828396.322, Elevation=247.844 m. (รทก.) ป้อนเข้าโปรแกรมดังรูปด้านล่าง เนื่องจาก Vertical Reference เป็นความสูง Orthometric height จึงไม่จำเป็นต้องเปลี่ยน

Surveyor Pocket Tools_2017-02-25_16-03-14.png

  • คลิกคำนวณที่ไอคอนรูปลูกศรชี้ลง ได้ผลลัพธ์ดังนี้

  • ตัวเลขสามชุดที่เขียนวงด้วยสี่เหลี่ยมด้านล่างๆคือ
    • ค่าสเกลแฟคเตอร์ที่จุดที่ 1 ESF = 0.9999695936, GSF = 1.0007788866
    • จุดกึ่งกลาง ESF = 0.9999675791, GSF = 1.0008552790 จุดกึ่งกลางนี้ ESF ใช้ค่าระดับเฉลี่ยของจุด 1 และจุดที่ 2 มคำนวณ ส่วนค่า GSF ได้จากพิกัดกึ่งกลาง N = (1657451.026 + 1658811.819) / 2 = 1658131.423, E = (808709.698 + 828396.322) / 2 = 818553.010
    • และจุดที่ 2 ESF = 0.9999655645, GSF = 1.0009340710

  • ค่าเฉลี่ย ESF หาได้ง่ายๆเพราะมัน linear จับบวกกันแล้วหารด้วยสาม = (0.9999695936 + 0.9999675791 +0.9999655645) / 3 = 0.9999675791
  • ค่าเฉลี่ย GSF ต้องใช้สูตร Simpsons มาช่วยหาค่าเฉลี่ย = (1.0007788866 + 4*1.0008552790 + 1.0009340710) / 6 = 1.0008556789
  • ค่าเฉลี่ย Combined Scale Factor (CSF) = 0.9999675791 *  1.0008556789 = 1.0008232302 เราต้องการนั่นเอง สังเกตว่าค่าสูงมากๆ 1 กม. ระยะทางบนแผนที่จะเพื้ยนจากระยะทางราบบนพื้นโลก 0.823 เมตรหรือ 82.3 ซม.

 

ปักหมุดลงบน Google Earth

  • ลองปักหมุดดูกัน

 

  • เรื่องสเกลแฟคเตอร์ในงานสำรวจขนาดใหญ่ ที่แบบ drawing ออกแบบบนระบบพิกัดฉาก UTM เป็นเรื่องที่หลีกเลี่ยงไม่ใช่ไม่ได้ เพราะจะทำให้ตำแหน่งสิ่งปลูกสร้างผิดเพี้ยนไปจากแบบ drawing การใช้สเกลแฟคเตอร์ถึงจะยุ่งยากไปบ้าง แต่ถ้าเข้าใจก็สามารถประยุกต์ใช้ได้อย่างเหมาะสมกับครื่องมือสมัยใหม่เช่น GPS และเครื่องมือรุ่นเดิมๆเช่นกล้อง Total station

Low Distortion Projection

  • ถ้าไม่ใช่สเกลแฟคเตอร์ละ มีทางออกไหม มีครับ ซึ่งวิธีการจะเรียกว่า Low Distortion Projection (LDP) คือสร้างระบบพิกัดฉากขึ้นมาเฉพาะสำหรับพื้นที่ แล้วพยายามคุมให้ความเพี้ยนไม่เกินค่าที่กำหนด เช่น ±20 ppm  แต่ถ้าพื้นที่โครงการไม่ใหญ่มากเช่น 56 กม. x 56 กม. พอจะคุมให้ไม่ให้ความเพี้ยนเกิน ±5 ppm คือระยะทาง 1000 ม. ความเพี้ยนของระยะทางไม่ให้เกิน 5 mm ถ้าระยะทาง 100 เมตร ก็เพื้ยนได้ 0.5 มม. ซึ่งถ้าตั้งกล้อง total station สำหรับให้ตำแหน่งเสาเข็ม ในระยะทางไม่เกิน 100 เมตร สามารถให้ได้เลยเพราะความเพี้ยนครึ่งมิลมิเมตร ถือว่าน้อยมาก จนไม่ต้องนำมาคิด (บางครั้งตอนตั้งเป้าให้ตำแหน่งเสาเข็ม เป้าปริซึมยังโยกไปไม่ตั้งฉาก ยังมากกว่านี้) ทำให้หน้างานสนาม ทำงานได้สะดวก ไม่ต้องตั้งสเกลแฟคเตอร์ให้กล้อง สามารถวางผังได้เลย สำรวจเก็บรายละเอียดก็ทำได้ทันที
  • เรื่องนี้ไม่ใช่เรื่องใหม่ เป็นเรื่องเก่านานพอสมควร ในอเมริกาเองก็นำมาใช้กันนานแล้ว ลองค้นหาในเน็ตด้วยคึย์เวิร์ดคำว่า “low distortion projection ldp” จะเห็นผลลัพธ์เกี่ยวกับเรื่องนี้ออกมากมายครับ ตอนหน้าผมจะนำเสนอการใช้วิธีนี้กันดูและผมพยายาม implement ด้วยการเขียนโปรแกรมมาช่วย แต่พบว่ามันมีอะไรที่มากกว่าที่คิด ติดตามกันต่อไปครับ